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Abstract

This paper provides an introduction to mixed-effects models for the analysis of repeated measurement data with sub-
jects and items as crossed random effects. A worked-out example of how to use recent software for mixed-effects mod-
eling is provided. Simulation studies illustrate the advantages offered by mixed-effects analyses compared to traditional
analyses based on quasi-F tests, by-subjects analyses, combined by-subjects and by-items analyses, and random regres-
sion. Applications and possibilities across a range of domains of inquiry are discussed.
! 2007 Elsevier Inc. All rights reserved.
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Psycholinguists and other cognitive psychologists use
convenience samples for their experiments, often based
on participants within the local university community.
When analyzing the data from these experiments, partic-
ipants are treated as random variables, because the
interest of most studies is not about experimental effects
present only in the individuals who participated in the
experiment, but rather in effects present in language
users everywhere, either within the language studied,
or human language users in general. The differences
between individuals due to genetic, developmental, envi-
ronmental, social, political, or chance factors are mod-
eled jointly by means of a participant random effect.

A similar logic applies to linguistic materials. Psych-
olinguists construct materials for the tasks that they
employ by a variety of means, but most importantly,
most materials in a single experiment do not exhaust
all possible syllables, words, or sentences that could be
found in a given language, and most choices of language
to investigate do not exhaust the possible languages that
an experimenter could investigate. In fact, two core prin-
ciples of the structure of language, the arbitrary (and
hence statistical) association between sound and mean-
ing and the unbounded combination of finite lexical
items, guarantee that a great many language materials
must be a sample, rather than an exhaustive list. The
space of possible words, and the space of possible sen-
tences, is simply too large to be modeled by any other
means. Just as we model human participants as random
variables, we have to model factors characterizing their
speech as random variables as well.
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Clark (1973) illuminated this issue, sparked by the
work of Coleman (1964), by showing how language
researchers might generalize their results to the larger
population of linguistic materials from which they sam-
ple by testing for statistical significance of experimental
contrasts with participants and items analyses. Clark’s
oft-cited paper presented a technical solution to this
modeling problem, based on statistical theory and com-
putational methods available at the time (e.g., Winer,
1971). This solution involved computing a quasi-F sta-
tistic which, in the simplest-to-use form, could be
approximated by the use of a combined minimum-F sta-
tistic derived from separate participants (F1) and items
(F2) analyses. In the 30+ years since, statistical tech-
niques have expanded the space of possible solutions
to this problem, but these techniques have not yet been
applied widely in the field of language and memory stud-
ies. The present paper discusses an alternative known as
a mixed effects model approach, based on maximum
likelihood methods that are now in common use in
many areas of science, medicine, and engineering (see,
e.g., Faraway, 2006; Fielding & Goldstein, 2006; Gil-
mour, Thompson, & Cullis, 1995; Goldstein, 1995; Pin-
heiro & Bates, 2000; Snijders & Bosker, 1999).

Software for mixed-effects models is now widely
available, in specialized commercial packages such as
MLwiN (MLwiN, 2007) and ASReml (Gilmour, Gogel,
Cullis, Welham, & Thompson, 2002), in general com-
mercial packages such as SAS and SPSS (the’mixed’ proce-
dures), and in the open source statistical programming
environment R (Bates, 2007). West, Welch, and Gałlech-
ki (2007) provide a guide to mixed models for five differ-
ent software packages.

In this paper, we introduce a relatively recent devel-
opment in computational statistics, namely, the possibil-
ity to include subjects and items as crossed, independent,
random effects, as opposed to hierarchical or multilevel
models in which random effects are assumed to be
nested. This distinction is sometimes absent in general
treatments of these models, which tend to focus on
nested models. The recent textbook by West et al.
(2007), for instance, does not discuss models with
crossed random effects, although it clearly distinguishes
between nested and crossed random effects, and advises
the reader to make use of the lmer() function in R, the
software (developed by the third author) that we intro-
duce in the present study, for the analysis of crossed
data.

Traditional approaches to random effects modeling
suffer multiple drawbacks which can be eliminated by
adopting mixed effect linear models. These drawbacks
include (a) deficiencies in statistical power related to
the problems posed by repeated observations, (b) the
lack of a flexible method of dealing with missing data,
(c) disparate methods for treating continuous and cate-
gorical responses, as well as (d) unprincipled methods

of modeling heteroskedasticity and non-spherical
error variance (for either participants or items). Meth-
ods for estimating linear mixed effect models have
addressed each of these concerns, and offer a better
approach than univariate ANOVA or ordinary least
squares regression.

In what follows, we first introduce the concepts and
formalism of mixed effects modeling.

Mixed effects model concepts and formalism

The concepts involved in a linear mixed effects model
will be introduced by tracing the data analysis path of a
simple example. Assume an example data set with three
participants s1, s2 and s3 who each saw three items w1,
w2, w3 in a priming lexical decision task under both
short and long SOA conditions. The design, the RTs
and their constituent fixed and random effects compo-
nents are shown in Table 1.

This table is divided into three sections. The left-
most section lists subjects, items, the two levels of
the SOA factor, and the reaction times for each com-
bination of subject, item and SOA. This section repre-
sents the data available to the analyst. The remaining
sections of the table list the effects of SOA and the
properties of the subjects and items that underly the
RTs. Of these remaining sections, the middle section
lists the fixed effects: the intercept (which is the same
for all observations) and the effect of SOA (a 19 ms
processing advantage for the short SOA condition).
The right section of the table lists the random effects
in the model. The first column in this section lists
by-item adjustments to the intercept, and the second
column lists by-subject adjustments to the intercept.
The third column lists by-subject adjustments to the
effect of SOA. For instance, for the first subject the
effect of a short SOA is attenuated by 11 ms. The final
column lists the by-observation noise. Note that in
this example we did not include by-item adjustments
to SOA, even though we could have done so. In the
terminology of mixed effects modeling, this data set
is characterized by random intercepts for both subject
and item, and by by-subject random slopes (but no
by-item random slopes) for SOA.

Formally, this dataset is summarized in (1).

yij ¼ Xijbþ Sisi þWjwj þ !ij ð1Þ

The vector yij represents the responses of subject i to
item j. In the present example, each of the vectors yij

comprises two response latencies, one for the short
and one for the long SOA. In (1), Xij is the design ma-
trix, consisting of an initial column of ones and followed
by columns representing factor contrasts and covariates.
For the present example, the design matrix for each sub-
ject-item combination has the simple form
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Xij ¼
1 0

1 1

! "
ð2Þ

and is the same for all subjects i and items j. The design
matrix is multiplied by the vector of population coeffi-
cients b. Here, this vector takes the form

b ¼
522:2

%19:0

! "
ð3Þ

where 522.2 is the coefficient for the intercept, and -19
the contrast for the short as opposed to the long SOA.
The result of this multiplication is a vector that again
is identical for each combination of subject and item:

Xijb ¼
522:2

503:2

! "
ð4Þ

It provides the group means for the long and short SOA.
These group means constitute the model’s best guess
about the expected latencies for the population, i.e.,
for unseen subjects and unseen items.

The next two terms in Eq. (1) serve to make the mod-
el’s predictions more precise for the subjects and items
actually examined in the experiment. First consider the
random effects structure for Subject. The Si matrix (in
this example) is a full copy of the Xij matrix. It is multi-
plied with a vector specifying for subject i the adjust-
ments that are required for this subject to the intercept

and to the SOA contrast coefficient. For the first subject
in Table 1,

S1js1 ¼
1 0

1 1

! " %26:2

11:0

! "
¼
%26:2

%15:2

! "
; ð5Þ

which tells us, first, that for this subject the intercept has
to be adjusted downwards by 26.2 ms for both the long
and the short SOA (the subject is a fast responder) and
second, that in the short SOA condition the effect of
SOA for this subject is attenuated by 11.0 ms. Combined
with the adjustment for the intercept that also applies to
the short SOA condition, the net outcome for an arbi-
trary item in the short SOA condition is %15.2 ms for
this subject.

Further precision is obtained by bringing the item
random effect into the model. The Wj matrix is again a
copy of the design matrix Xij. In the present example,
only the first column, the column for the intercept, is
retained. This is because in this particular constructed
data set the effect of SOA does not vary systematically
with item. The vector wj therefore contains one element
only for each item j. This element specifies the adjust-
ment made to the population intercept to calibrate the
expected values for the specific processing costs associ-
ated with this individual item. For item 1 in our exam-
ple, this adjustment is %28.3, indicating that compared
to the population average, this particular item elicited

Table 1
Example data set with random intercepts for subject and item, and random slopes for subject

Subj Item SOA RT Fixed ItemInt Random Res

Int SOA SubInt SubSOA

s1 w1 Long 466 522.2 0 %28.3 %26.2 0 %2.0
s1 w2 Long 520 522.2 0 14.2 %26.2 0 9.8
s1 w3 Long 502 522.2 0 14.1 %26.2 0 %8.2
s1 w1 Short 475 522.2 %19 %28.3 %26.2 11 15.4
s1 w2 Short 494 522.2 %19 14.2 %26.2 11 %8.4
s1 w3 Short 490 522.2 %19 14.1 %26.2 11 %11.9
s2 w1 Long 516 522.2 0 %28.3 29.7 0 %7.4
s2 w2 Long 566 522.2 0 14.2 29.7 0 0.1
s2 w3 Long 577 522.2 0 14.1 29.7 0 11.5
s2 w1 Short 491 522.2 %19 %28.3 29.7 %12.5 %1.5
s2 w2 Short 544 522.2 %19 14.2 29.7 %12.5 8.9
s2 w3 Short 526 522.2 %19 14.1 29.7 %12.5 %8.2
s3 w1 Long 484 522.2 0 %28.3 %3.5 0 %6.3
s3 w2 Long 529 522.2 0 14.2 %3.5 0 %3.5
s3 w3 Long 539 522.2 0 14.1 %3.5 0 6.0
s3 w1 Short 470 522.2 %19 %28.3 %3.5 1.5 %2.9
s3 w2 Short 511 522.2 %19 14.2 %3.5 1.5 %4.6
s3 w3 Short 528 522.2 %19 14.1 %3.5 1.5 13.2

The first four columns of this table constitute the data normally available to the researcher. The remaining columns parse the RTs into
the contributions from the fixed and random effects. Int: intercept, SOA: contrast effect for SOA; ItemInt: by-item adjustments to
the intercept; SubInt: by-subject adjustments to the intercept; SubSOA: by-subject adjustments to the slope of the SOA contrast; Res:
residual noise.
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shorter latencies, for both SOA conditions, across all
subjects.

Wjw1 ¼
1

1

! "
%28:3ð Þ ¼

%28:3

%28:3

! "
ð6Þ

The model specification (1) has as its last term the vector
of residual errors !ij, which in our running example has
two elements for each combination of subject and item,
one error for each SOA.

For subject 1, Eq. (1) formalizes the following vector
of sums,

which we can rearrange in the form of a composite inter-
cept, followed by a composite effect of SOA, followed by
the residual error.

In this equation for y1 the presence of by-subject ran-
dom slopes for SOA and the absence of by-item random
slopes for SOA is clearly visible.

The subject matrix S and the item matrix W can be
combined into a single matrix often written as Z, and
the subject and item random effects s and w can likewise
be combined into a single vector generally referenced as
b, leading to the general formulation

y ¼ Xbþ Zbþ !: ð9Þ

To complete the model specification, we need to be
precise about the random effects structure of our data.
Recall that a random variable is defined as a normal
variate with zero mean and unknown standard devia-
tion. Sample estimates (derived straightforwardly from
Table 1) for the standard deviations of the four ran-
dom effects in our example are r̂sint

¼ 28:11 for the
by-subject adjustments to the intercepts, r̂ssoa ¼ 9:65
for the by-subject adjustments to the contrast coeffi-
cient for SOA, r̂i ¼ 24:50 for the by-item adjustments
to the intercept, and r̂! ¼ 8:55 for the residual error.

Because the random slopes and intercept are pairwise
tied to the same observational units, they may be cor-
related. For our data, q̂sint; soa

¼ %0:71. These four ran-
dom effects parameters complete the specification of
the quantitative structure of our dataset. We can now
present the full formal specification of the correspond-
ing mixed-effects model,

y¼XbþZbþ!;!&N ð0;r2IÞ; b&N ð0;r2RÞ; b? !;
ð10Þ

where R is the relative variance-covariance matrix for
the random effects. The symbol \ indicates indepen-
dence of random variables and N denotes the multi-

variate normal (Gaussian) distribution. We say that
matrix R is the relative variance-covariance matrix
of the random effects in the sense that it is the
variance of b relative to r2, the scalar variance of
the per-observation noise term !. The variance-covari-
ance specification of the model is an important tool
to capture non-independence (asphericity) between
observations.

Hypotheses about the structure of the variance-
covariance matrix can be tested by means of likelihood
ratio tests. Thus, we can formally test whether a random
effect for items is required and that the presence of the
parameter ri in the model specification is actually justi-
fied. Similarly, we can inquire whether a parameter for
the covariance of the by-subject slopes and intercepts
contributes significantly to the model’s goodness of fit.
We note that in this approach it is an empirical question
whether random effects for item or subject are required
in the model.

When a mixed-effects model is fitted to a data set, its set
of estimated parameters includes the coefficients for the

y1 ¼ y1j ¼ X1jbþ Ss1 þWwj þ !1j ¼

ð522:2 þ 0Þ þ ð%26:2 þ 0Þ þ ð%28:3Þ þ ð%2:0Þ
ð522:2 þ 0Þ þ ð%26:2 þ 0Þ þ ð14:2Þ þ ð9:8Þ
ð522:2 þ 0Þ þ ð%26:2 þ 0Þ þ ð14:1Þ þ ð%8:2Þ
ð522:2 þ %19Þ þ ð%26:2 þ 11Þ þ ð%28:3Þ þ ð15:4Þ
ð522:2 þ %19Þ þ ð%26:2 þ 11Þ þ ð14:2Þ þ ð%8:4Þ
ð522:2 þ %19Þ þ ð%26:2 þ 11Þ þ ð14:1Þ þ ð11:9Þ

0

BBBBBBBB@

1

CCCCCCCCA

ð7Þ

y1 ¼

ð522:2 % 26:2 % 28:3Þ þ ð0 þ 0Þ þ ð%2:0Þ
ð522:2 % 26:2 þ 14:2Þ þ ð0 þ 0Þ þ ð9:8Þ
ð522:2 % 26:2 þ 14:1Þ þ ð0 þ 0Þ þ ð%8:2Þ
ð522:2 % 26:2 % 28:3Þ þ ð%19 þ 11Þ þ ð15:4Þ
ð522:2 % 26:2 þ 14:2Þ þ ð%19 þ 11Þ þ ð%8:4Þ
ð522:2 % 26:2 þ 14:1Þ þ ð%19 þ 11Þ þ ð11:9Þ

0

BBBBBBBB@

1

CCCCCCCCA

ð8Þ
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fixed effects on the one hand, and the standard deviations
and correlations for the random effects on the other hand.
The individual values of the adjustments made to inter-
cepts and slopes are calculated once the random-effects
parameters have been estimated. Formally, these adjust-
ments, referenced as Best Linear Unbiased Predictors
(or BLUPs), are not parameters of the model.

Data analysis

We illustrate mixed-effects modeling with R, an open-
source language and environment for statistical comput-
ing (R development core team, 2007), freely available at
http://cran.r-project.org. The lme4 package
(Bates, 2005; Bates & Sarkar, 2007) offers fast and reliable
algorithms for parameter estimation (see also West et al.,
2007:14) as well as tools for evaluating the model (using
Markov chain Monte Carlo sampling, as explained
below).

Input data for R should have the structure of the first
block in Table 1, together with an initial header line
specifying column names. The data for the first subject
therefore should be structured as follows, using what is
known as the long data format in R (and as the univar-
iate data format in SPSS):

Subj Item SOA RT

1 s1 w1 short 475
2 s1 w2 short 494
3 s1 w3 short 490
4 s1 w1 long 466
5 s1 w2 long 520
6 s1 w3 long 502

We load the data, here simply an ASCII text file, into
R with

> priming = read.table("ourdata.txt",
header = TRUE)

SPSS data files (if brought into the long format within
SPSS) can be loaded with read.spss and csv tables
(in long format) are loaded with read.csv. We fit the
model of Eq. (10) to the data with

> priming.lmer = lmer(RT & SOA + (1jItem) +
(1 + SOAjSubj), data = priming)

The dependent variable, RT, appears to the left of the
tilde operator (&), which is read as ‘‘depends on” or ‘‘is
a function of”. The main effect of SOA, our fixed effect,
is specified to the right of the tilde. The random intercept
for Item is specified with (1|Item), which is read as a
random effect introducing adjustments to the intercept
(denoted by 1) conditional on or grouped by Item. The
random effects for Subject are specified as
(1+SOA|Subject). This notation indicates, first of

all, that we introduce by-subject adjustments to the inter-
cept (again denoted by 1) as well as by-subject adjust-
ments to SOA. In other words, this model includes by-
subject and by-item random intercepts, and by-subject
random slopes for SOA. This notation also indicates that
the variances for the two levels of SOA are allowed to be
different. In other words, it models potential by-subject
heteroskedasticity with respect to SOA. Finally, this spec-
ification includes a parameter estimating the correlation
q̂sint; soa

of the by-subject random effects for slope and
intercept.

A summary of the model is obtained with

> summary (priming.lmer)
Linear mixed-effects model fit by REML

Formula : RT&SOA+(1jItem)+(1+SOAjSubj)
Data : priming
AIC BIC logLik ML

deviance
REML
deviance

150.0 155.4 %69.02 151.4 138.0
Random effects :

Groups Name Variance Std.Dev Corr

Item (Intercept) 613.73 24.774
Subj (Intercept) 803.07 28.338

SOAshort 136.46 11.682 %1.000
Residual 102.28 10.113

number of obs : 18, groups : Item, 3; Subj, 3
Fixed effects :

Estimate Std.
Error

t value

(Intercept) 522.111 21.992 23.741
SOAshort %18.889 8.259 %2.287

The summary first mentions that the model is fitted
using restricted maximum likelihood estimation (REML),
a modification of maximum likelihood estimation that is
more precise for mixed-effects modeling. Maximum like-
lihood estimation seeks to find those parameter values
that, given the data and our choice of model, make the
model’s predicted values most similar to the observed
values. Discussion of the technical details of model fit-
ting is beyond the scope of this paper. However, in the
Appendix we provide some indication of the kind of
issues involved.

The summary proceeds with repeating the model
specification, and then lists various measures of good-
ness of fit. The remainder of the summary contains
two subtables, one for the random effects, and one for
the fixed effects.

The subtable for the fixed-effects shows that the
estimates for slope and the contrast coefficient for
SOA are right on target: 522.11 for the intercept (com-
pare 522.2 in Table 1), and -18.89 (compare -19.0).
For each coefficient, its standard error and t-statistic
are listed.
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Turning to the subtable of random effects, we observe
that the first column lists the main grouping factors:
Item, Subj and the observation noise (Residual).
The second column specifies whether the random effect
concerns the intercept or a slope. The third column
reports the variances, and the fourth column the square
roots of these variances, i.e., the corresponding standard
deviations. The sample standard deviations calculated
above on the basis of Table 1 compare well with the
model estimates, as shown in Table 2.

The high correlation of the intercept and slope for the
subject random effects (%1.00) indicates that the model
has been overparameterized. We first simplify the model
by removing the correlation parameter and by assuming

homoskedasticity for the subjects with respect to the
SOA conditions, as follows:

> priming.lmer1 = lmer(RT & SOA + (1jItem) +
(1jSubj) + (1j SOA:Subj), data =
priming)
> print(priming.lmer1, corr = FALSE)

Random effects

Groups Name Variance Std.Dev.

SOA:Subj (Intercept) 34.039 5.8343
Subj (Intercept) 489.487 22.1243
Item (Intercept) 625.623 25.0125
Residual 119.715 10.9414

number of obs: 18, groups: SOA:Subj, 6; Subj, 3; Item, 3
Fixed effects:

Estimate Std. Error t value

(Intercept) 522.111 19.909 26.23
SOAshort %18.889 7.021 %2.69

(Here and in the examples to follow, we abbreviated the
R output.) The variance for the by-subject adjustments
for SOA is small, and potentially redundant, so we fur-

ther simplify to a model with only random intercepts for
subject:

> priming.lmer2 = lmer(RT & SOA + (1j Item) +
(1jSubj), data = priming)

In order to verify that this most simple model is
justified, we carry out a likelihood ratio test (see,
e.g., Pinheiro & Bates, 2000, p. 83) that compares
the most specific model priming.lmer2 (which sets
q to the specific value of zero and assumes homoske-
dasticity) with the more general model prim-
ing.lmer (which does not restrict q a priori and
explicitly models heteroskedasticity). The likelihood
of the more general model (Lg) should be greater than
the likelihood of the more specific model (Ls), and
hence the likelihood ratio test statistic 2log(Lg/
Ls) > 0. If g is the number of parameters for the gen-
eral model, and s the number of parameters for the
restricted model, then the asymptotic distribution of
the likelihood ratio test statistic, under the null
hypothesis that the restricted model is sufficient, fol-
lows a chi-squared distribution with g-s degrees of
freedom. In R, the likelihood ratio test is carried out
with the anova function:

The value listed under Chisq equals twice the differ-
ence between the log-likelihood (listed under logLik)
for priming.lmer and that of priming.lmer2.
The degrees of freedom for the chi-squared distribution,
2, is the difference between the number of parameters in
the model (listed under Df). It it clear that the removal
of the parameter for the correlation together with the
parameter for by-subject random slopes for SOA is jus-
tified (X 2

ð2Þ ¼ 2:96; p ¼ 0:228). The summary of the sim-
plified model

> print(priming.lmer2, corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.

Item (Intercept) 607.72 24.652
Subj (Intercept) 499.22 22.343
Residual 137.35 11.720

number of obs: 18, groups: Item, 3; Subj, 3
Fixed effects:

Estimate Std. Error t value

(Intercept) 522.111 19.602 26.636
SOAshort %18.889 5.525 %3.419

> anova(priming.lmer, priming.lmer2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

priming.lmer2 4 162.353 165.914 %77.176
priming.lmer 6 163.397 168.740 %75.699 2.9555 2 0.2282

Table 2
Comparison of sample estimates and model estimates for the
data of Table 1

Parameter Sample Model

r̂i 24.50 24.774
r̂sint 28.11 28.338
r̂ssoa 9.65 11.681
r̂! 8.55 10.113
q̂sint; soa %0.71 %1.00
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lists only random intercepts for subject and item, as
desired.

The reader may have noted that summaries for model
objects fitted with lmer list standard errors and t-statis-
tics for the fixed effects, but no p-values. This is not with-
out reason.

With many statistical modeling techniques we can
derive exact distributions for certain statistics calculated
from the data and use these distributions to perform
hypothesis tests on the parameters, or to create confi-
dence intervals or confidence regions for the values of
these parameters. The general class of linear models fit
by ordinary least squares is the prime example of such
a well-behaved class of statistical models for which we
can derive exact results, subject to certain assumptions
on the distribution of the responses (normal, constant
variance and independent disturbance terms). This gen-
eral paradigm provides many of the standard techniques
of modern applied statistics including t-tests and analy-
sis of variance decompositions, as well as confidence
intervals based on t-distributions. It is tempting to
believe that all statistical techniques should provide such
neatly packaged results, but they don’t.

Inferences regarding the fixed-effects parameters are
more complicated in a linear mixed-effects model than
in a linear model with fixed effects only. In a model with
only fixed effects we estimate these parameters and one
other parameter which is the variance of the noise that
infects each observation and that we assume to be inde-
pendent and identically distributed (i.i.d.) with a normal
(Gaussian) distribution. The initial work by William
Gossett (who wrote under the pseudonym of ‘‘Student”)
on the effect of estimating the variance of the distur-
bances on the estimates of precision of the sample mean,
leading to the t-distribution, and later generalizations by
Sir Ronald Fisher, providing the analysis of variance,
were turning points in 20th century statistics.

When mixed-effects models were first examined, in
that days when the computing tools were considerably
less sophisticated than at present, many approximations
were used, based on analogy to fixed-effects analysis of
variance. For example, variance components were often
estimated by calculating certain mean squares and
equating the observed mean square to the corresponding
expected mean square. There is no underlying objective,
such as the log-likelihood or the log-restricted-likeli-
hood, that is being optimized by such estimates. They
are simply assumed to be desirable because of the anal-
ogy to the results in the analysis of variance. Further-
more, the theoretical derivations and corresponding
calculations become formidable in the presence of multi-
ple factors, such as both subject and item, associated
with random effects or in the presence of unbalanced
data.

Fortunately, it is now possible to evaluate the maxi-
mum likelihood or the REML estimates of the parameters

in mixed-effects models reasonably easily and quickly,
even for complex models fit to very large observational
data sets. However, the temptation to perform hypothe-
sis tests using t-distributions or F-distributions based on
certain approximations of the degrees of freedom in
these distributions persists. An exact calculation can be
derived for certain models with a comparatively simple
structure applied to exactly balanced data sets, such as
occur in text books. In real-world studies the data often
end up unbalanced, especially in observational studies
but even in designed experiments where missing data
can and do occur, and the models can be quite compli-
cated. The simple formulas for the degrees of freedom
for inferences based on t or F-distributions do not apply
in such cases. In fact, the pivotal quantities for such
hypothesis tests do not even have t or F-distributions
in such cases so trying to determine the ‘‘correct” value
of the degrees of freedom to apply is meaningless. There
are many approximations in use for hypothesis tests in
mixed models—the MIXED procedure in SAS offers 6 dif-
ferent calculations of degrees of freedom in certain tests,
each leading to different p-values, but none of them is
‘‘correct”.

It is not even obvious how to count the number of
parameters in a mixed-effects model. Suppose we have
1000 subjects, each exposed to 200 items chosen from
a pool of 10000 potential items. If we model the effect
of subject and item as independent random effects we
add two variance components to the model. At the esti-
mated parameter values we can evaluate 1000 predictors
of the random effects for subject and 10000 predictors of
the random effects for item. Did we only add two param-
eters to the model when we incorporated these 11000
random effects? Or should we say that we added several
thousand parameters that are adjusted to help explain
the observed variation in the data? It is overly simplistic
to say that thousands of random effects amount to only
two parameters. However, because of the shrinkage
effect in the evaluation of the random effects, each ran-
dom effect does not represent an independent parameter.

Fortunately, we can avoid this issue of counting
parameters or, more generally, the issue of approximat-
ing degrees of freedom. Recall that the original purpose
of the t and F-distributions is to take into account the
imprecision in the estimate of the variance of the ran-
dom disturbances when formulating inferences regard-
ing the fixed-effects parameters. We can approach this
problem in the more general context with Markov chain
Monte Carlo (MCMC) simulations. In MCMC simulations
we sample from conditional distributions of parameter
subsets in a cycle, thus allowing the variation in one
parameter subset, such as the variance of the random
disturbances or the variances and covariances of ran-
dom effects, to be reflected in the variation of other
parameter subsets, such as the fixed effects. This is what
the t and F-distributions accomplish in the case of mod-
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els with fixed-effects only. Crucially, the MCMC technique
applies to more general models and to data sets with
arbitrary structure.

Informally, we can conceive of Markov chain Monte
Carlo (MCMC) sampling from the posterior distribution
of the parameters (see, e.g., Andrieu, de Freitas, Doucet,
& Jordan, 2003, for a general introduction to MCMC) as a
random walk in parameter space. Each mixed effects
model is associated with a parameter vector, which can
be divided into three subsets,

1. the variance, r2, of the per-observation noise term,
2. the parameters that determine the variance-covari-

ance matrix of the random effects, and
3. the random effects b̂ and the fixed effects b̂.

Conditional on the other two subsets and on the
data, we can sample directly from the posterior distribu-
tion of the remaining subset. For the first subset we sam-
ple from a chi-squared distribution conditional on the

current residuals. The prior for the variances and covari-
ances of the random effects is chosen so that for the sec-
ond subset we sample from a Wishart distribution.
Finally, conditional on the first two subsets and on the
data the sampling for the third subset is from a multivar-
iate normal distribution. The details are less important
than the fact that these are well-accepted ‘‘non-informa-
tive” priors for these parameters. Starting from the REML

estimates of the parameters in the model we cycle
through these steps many times to generate a sample
from the posterior distribution of the parameters. The
mcmcsamp function produces such a sample, for which
we plot the estimated densities on a log scale.

> mcmc = mcmcsamp(priming.lmer2, n = 50000)
> densityplot(mcmc, plot.points = FALSE)

The resulting plot is shown in Fig. 1. We can see that the
posterior density of the fixed-effects parameters is rea-
sonably symmetric and close to a normal (Gaussian) dis-
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Fig. 1. Empirical density estimates for the Markov chain Monte Carlo sample for the posterior distribution of the parameters in the
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tribution, which is generally the case for such parame-
ters. After we have checked this we can evaluate p-values
from the sample with an ancillary function defined in the
languageR package, which takes a fitted model as
input and generates by default 10,000 samples from
the posterior distribution:

We obtain p-values for only the first two parameters
(the fixed effects). The first two columns show that the
model estimates and the mean estimate across MCMC

samples are highly similar, as expected. The next two
columns show the upper and lower 95% highest poster-
ior density intervals (see below). The final two columns
show p-values based on the posterior distribution
(pMCMC) and on the t-distribution respectively. The
degrees of freedom used for the t-distribution by
pvals.fnc() is an upper bound: the number of obser-
vations minus the number of fixed-effects parameters. As
a consequence, p-values calculated with these degrees of
freedom will be anti-conservative for small samples.1

The distributions of the log-transformed variance
parameters are also reasonably symmetric, although
some rightward skewing is visible in Fig. 1. Without
the log transformation, this skewing would be much
more pronounced: The untransformed distributions
would not be approximated well by a normal distribu-
tion with mean equal to the estimate and standard devi-
ation equal to a standard error. That the distribution of
the variance parameters is not symmetric should not
come as a surprise. The use of a v2 distribution for a var-
iance estimate is taught in most introductory statistics
courses. As Box and Tiao (1992) emphasize, the loga-
rithm of the variance is a more natural scale on which
to assume symmetry.

For each of the panels in Fig. 1 we calculate a Bayes-
ian highest posterior density (HPD) confidence interval.
For each parameter the HPD interval is constructed from
the empirical cumulative distribution function of the
sample as the shortest interval for which the difference
in the empirical cumulative distribution function values

of the endpoints is the nominal probability. In other
words, the intervals are calculated to have 95% probabil-
ity content. There are many such intervals. The HPD

intervals are the shortest intervals with the given proba-
bility content. Because they are created from a sample,
these intervals are not deterministic: taking another sam-
ple gives slightly different values. The HPD intervals for
the fixed effects in the present example are listed in the
output of pvals.fnc(), as illustrated above. The stan-
dard 95% confidence intervals for the fixed effects
parameters, according to b̂i ' tða=2; mÞsbi

, with the upper
bound for the degrees of freedom (18 % 2 = 16) are
narrower:

>coefs <- summary(priming.lmer1)@coefs
>coefs[, 1] + qt(0.975, 16) * outer(coefs[, 2],
c(%1, 1))

[,1] [,2]

(Intercept) 479.90683 564.315397
SOAshort %33.77293 %4.004845

For small data sets such as the example data considered
here, they give rise to less conservative inferences that
may be incorrect and should be avoided.

The HPD intervals for the random effects can be
obtained from the mcmc object obtained with
pvals.fnc() as follows:

> mcmc$random

MCMCmean HPD95lower HPD95upper

sigma 12.76 7.947 21.55
Item.(In) 27.54 6.379 140.96
Subj.(In) 32.62 9.820 133.47

It is worth noting that the variances for the ran-
dom effects parameters may get close to zero but will
never actually be zero. Generally it would not make
sense to test a hypothesis of the form H0 : r2 = 0 ver-
sus HA : r2 > 0 for these parameters. Neither ‘‘Invert-
ing” the HPD interval nor using the empirical
cumulative distribution function from the MCMC sam-

> mcmc = pvals.fnc(priming.lmer2, nsim = 10000)
> mcmc$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>jtj)

(Intercept) 522.11 521.80 435.45 616.641 0.0012 0.0000
SOAshort %18.89 %18.81 %32.09 %6.533 0.0088 0.0035

1 For data sets characteristic for studies of memory and
language, which typically comprise many hundreds or thou-
sands of observations, the particular value of the number of
degrees of freedom is not much of an issue. Whereas the
difference between 12 and 15 degrees of freedom may have
important consequences for the evaluation of significance
associated with a t statistic obtained for a small data set, the
difference between 612 and 615 degrees of freedom has no
noticeable consequences. For such large numbers of degrees of
freedom, the t distribution has converged, for all practical
purposes, to the standard normal distribution. For large data
sets, significance at the 5% level in a two-tailed test for the fixed
effects coefficients can therefore be gauged informally by
checking the summary for whether the absolute value of the
t-statistic exceeds 2.
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ple evaluated at zero works because the value 0 can-
not occur in the MCMC sample. Using the estimate of
the variance (or the standard deviation) and a stan-
dard error to create a z statistic is, in our opinion,
nonsense because we know that the distribution of
the parameter estimates is not symmetric and does
not converge to a normal distribution. We therefore
recommend likelihood ratio tests for evaluating
whether including a random effects parameter is justi-
fied. As illustrated above, we fit a model with and
without the variance component and compare the
quality of the fits. The likelihood ratio is a reasonable
test statistic for the comparison but we note that the
‘‘asymptotic” reference distribution of a v2 does not
apply because the parameter value being tested is on
the boundary. Therefore, the p-value computed using
the v2 reference distribution is conservative for vari-
ance parameters. For correlation parameters, which
can be both positive or negative, this caveat does
not apply.

Key advantages of mixed-effects modeling

An important new possibility offered by mixed-effects
modeling is to bring effects that unfold during the course
of an experiment into account, and to consider other
potentially relevant covariates as well.

There are several kinds of longitudinal effects that
one may wish to consider. First, there are effects of
learning or fatigue. In chronometric experiments, for
instance, some subjects start out with very short
response latencies, but as the experiment progresses,
they find that they cannot keep up their fast initial
pace, and their latencies progressively increase. Other
subjects start out cautiously, and progressively tune
in to the task and respond more and more quickly.
By means of counterbalancing, adverse effects of learn-
ing and fatigue can be neutralized, in the sense that the
risk of confounding these effects with critical predictors
is reduced. However, the effects themselves are not
brought into the statistical model, and consequently
experimental noise remains in the data, rendering more
difficult the detection of significance for the predictors
of interest when subsets of subjects are exposed to
the same lists of items.

Second, in chronometric paradigms, the response to a
target trial is heavily influenced by how the preceding
trials were processed. In lexical decision, for instance,
the reaction time to the preceding word in the experi-
ment is one of the best predictors for the target latency,
with effect sizes that may exceed that of the word fre-
quency effect. Often, this predictivity extends from the
immediately preceding trial to several additional preced-
ing trials. This major source of experimental noise

should be brought under statistical control, at the risk
of failing to detect otherwise significant effects.

Third, qualitative properties of preceding trials
should be brought under statistical control as well. Here,
one can think of whether the response to the preceding
trial in a lexical decision task was correct or incorrect,
whether the preceding item was a word or a nonword,
a noun or a verb, and so on.

Fourth, in tasks using long-distance priming, lon-
gitudinal effects are manipulated on purpose. Yet
the statistical methodology of the past decades
allowed priming effects to be evaluated only after
averaging over subjects or items. However, the details
of how a specific prime was processed by a specific
subject may be revealing about how that subject pro-
cesses the associated target presented later in the
experiment.

Because mixed-effects models do not require prior
averaging, they offer the possibility of bringing all these
kinds of longitudinal effects straightforwardly into the
statistical model. In what follows, we illustrate this
advantage for a long-distance priming experiment
reported in de Vaan, Schreuder, and Baayen (2007).
Their lexical decision experiment used long-term prim-
ing (with 39 trials intervening between prime and tar-
get) to probe budding frequency effects for
morphologically complex neologisms. Neologisms were
preceded by two kinds of prime, the neologism itself
(identity priming) or its base word (base priming).
The data are available in the languageR package in
the CRAN archives (http://cran.r-project.org,
see Baayen, 2008, for further documentation on this
package) under the name primingHeidPrevRT. After
attaching this data set we fit an initial model with
Subject and Word as random effects and priming
Condition as fixed-effect factor.

> attach(primingHeidPrevRT)
> print(lmer(RT Condition + (1jWord) + (1jSubject)),
corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.

Word (Intercept) 0.0034119 0.058412
Subject (Intercept) 0.0408438 0.202098
Residual 0.0440838 0.209962

number of obs: 832, groups: Word, 40; Subject, 26
Fixed effects:

Estimate Std. Error t value

(Intercept) 6.60297 0.04215 156.66
Conditionheid 0.03127 0.01467 2.13

The positive contrast coefficient for Condition and
t > 2 in the summary suggests that long-distance identity
priming would lead to significantly longer response
latencies compared to base priming.
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However, this counterintuitive inhibitory priming
effect is no longer significant when the decision latency
at the preceding trial (RTmin1) is brought into the model,

> print(lmer(RT
log(RTmin1) + Condition + (1jWord) + (1jSubject)),
corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.

Word (Intercept) 0.0034623 0.058841
Subject (Intercept) 0.0334773 0.182968
Residual 0.0436753 0.208986

number of obs: 832, groups: Word, 40; Subject, 26
Fixed effects:

Estimate Std. Error t value

(Intercept) 5.80465 0.22298 26.032
log(RTmin1) 0.12125 0.03337 3.633
Conditionheid 0.02785 0.01463 1.903

The latency to the preceding has a large effect size
with a 400 ms difference between the smallest and largest
predictor values, the corresponding difference for the
frequency effect was only 50 ms.

The contrast coefficient for Condition changes sign
when accuracy and response latency to the prime itself, 40
trials back in the experiment, are taken into account.

> print(lmer(RT log(RTmin1) + ResponseToPrime *
RTtoPrime + Condition + (1j Word) +
(1jSubject)), + corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.

Word (Intercept) 0.0013963 0.037367
Subject (Intercept) 0.0235948 0.153606
Residual 0.0422885 0.205642

number of obs: 832, groups: Word, 40; Subject, 26
Fixed effects:

Estimate Std. Error t value

(Intercept) 4.32436 0.31520 13.720
log(RTmin1) 0.11834 0.03251 3.640
ResponseTo
Primeincorrect

1.45482 0.40525 3.590

RTtoPrime 0.22764 0.03594 6.334
Conditionheid %0.02657 0.01618 %1.642
ResponseToPrime
incorrect:

RTtoPrime

%0.20250 0.06056 %3.344

The table of coefficients reveals that if the prime had
elicited a nonword response and the target a word
response, response latencies to the target were slowed
by some 100 ms, compared to when the prime elicited
a word response. For such trials, the response latency
to the prime was not predictive for the target. By con-
trast, the reaction times to primes that were accepted
as words were significantly correlated with the reaction
time to the corresponding targets.

After addition of log Base Frequency as covariate
and trimming of atypical outliers,

> priming.lmer = lmer(RT log(RTmin1) + ResponseToPrime *
RTtoPrime + Base
Frequency + Condition + (1j + Word) + (1jSubject))
> print(update(priming.lmer,
subset = abs(scale(resid(priming.lmer))) < 2.5),
cor = FALSE)
Random effects:

Groups Name Variance Std.Dev.

Word (Intercept) 0.00049959 0.022351
Subject (Intercept) 0.02400262 0.154928
Residual 0.03340644 0.182774

number of obs: 815, groups: Word, 40; Subject, 26
Fixed effects:

Estimate Std. Error t value

(Intercept) 4.388722 0.287621 15.259
log(RTmin1) 0.103738 0.029344 3.535
ResponseToPrime
incorrect

1.560777 0.358609 4.352

RTtoPrime 0.236411 0.032183 7.346
BaseFrequency %0.009157 0.003590 %2.551
Conditionheid %0.038306 0.014497 %2.642
ResponseToPrime
incorrect:
RTtoPrime

%0.216665 0.053628 %4.040

we observe significant facilitation from long-distance
identity priming. For a follow-up experiment using
self-paced reading of continuous text, latencies were
likewise codetermined by the reading latencies to the
words preceding in the discourse, as well as by the read-
ing latency for the prime. Traditional averaging proce-
dures applied to these data would either report a null
effect (for self-paced reading) or would lead to a com-
pletely wrong interpretation of the data (lexical deci-
sion). Mixed-effects modeling allows us to avoid these
pitfalls, and makes it possible to obtain substantially
improved insight into the structure of one’s experimental
data.

Some common designs

Having illustrated the important analytical advanta-
ges offered by mixed-effects modeling with crossed ran-
dom effects for subjects and items, we now turn to
consider how mixed-effects modeling compares to tradi-
tional analysis of variance and random regression.
Raaijmakers, Schrijnemakers, and Gremmen (1999) dis-
cuss two common factorial experimental designs and
their analyses. In this section, we first report simulation
studies using their designs, and compare the perfor-
mance of current standards with the performance of
mixed-effects models. Simulations were run in R (version
2.4.0) (R development core team, 2007) using the lme4
package of Bates and Sarkar (2007) (see also Bates,
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2005). The code for the simulations is available in the
languageR package in the CRAN archives (http://
cran.r-project.org, see Baayen, 2008). We then
illustrate the robustness of mixed-effects modeling to
missing data for a split-plot design, and then pit
mixed-effects regression against random regression, as
proposed by Lorch and Myers (1990).

A design traditionally requiring quasi-F ratios

A constructed dataset discussed by Raaijmakers et al.
(1999) comprises 64 observations with 8 subjects and 8
items. Items are nested under treatment: 4 items are pre-
sented with a short SOA, and 4 with a long SOA. Sub-
jects are crossed with item. A quasi-F test, the test
recommended by Raaijmakers et al. (1999), based on
the mean squares in the mean squares decomposition
shown in Table 3 shows that the effect of SOA is not sig-
nificant (F(1.025,9.346) = 1.702,p = 0.224). It is note-
worthy that the model fits 64 data points with the help
of 72 parameters, 6 of which are inestimable.

The present data set is available in the languageR
package as quasif. We fit a mixed effects model to
the data with

> quasif = lmer(RT & SOA + (1jItem) +
(1 + SOAjSubject), data = quasif)

and inspect the estimated parameters with

> summary(quasif)
Random effects:

Groups Name VarianceStd.Dev.Corr

Item (Intercept) 448.29 21.173
Subject (Intercept) 861.99 29.360

SOAshort 502.65 22.420 %0.813
Residual 100.31 10.016

number of obs: 64, groups: Item, 8; Subject, 8
Fixed effects:

Estimate Std.Error t value

(Intercept)540.91 14.93 36.23
SOAshort 22.41 17.12 1.31

The small t-value for the contrast coefficient for SOA
shows that this predictor is not significant. This is clear
as well from the summary of the fixed effects produced
by pvals.fnc (available in the languageR package),
which lists the estimates, their MCMC means, the corre-
sponding HPD intervals, the two-tailed MCMC probability,
and the two-tailed probability derived from the t-test
using, as mentioned above, the upper bound for the
degrees of freedom.

The model summary lists four random effects: random
intercepts for participants and for items, by-participant
random slopes for SOA, and the residual error. Each ran-
dom effect is paired with an estimate of the standard devi-
ation that characterizes the spread of the random effects
for the slopes and intercepts. Because the by-participant
BLUPs for slopes and intercepts are paired observations,
the model specification that we used here allows for these
two random variables to be correlated. The estimate of
this correlation (r =% 0.813) is the final parameter of the
present mixed effects model.

The p-value for the t-test obtained with the mixed-
effects model is slightly smaller than that produced by
the quasi-F test. However, for the present small data
set the MCMC p-value is to be used, as the p-value with
the above mentioned upper bound for the degrees of
freedom is anticonservative. To see this, consider Table
4, which summarizes Type I error rate and power across
simulated data sets, 1000 with and 1000 without an effect
of SOA. The number of simulation runs is kept small on
purpose: These simulations are provided to illustrate
only main trends in power and error rate.

For each simulated data set, five analyses were con-
ducted: a mixed-effects analysis with the anticonservative
p-value based on the t-test and the appropriate p-value
based on 10,000 MCMC samples generated from the poster-
ior distribution of the parameters of the fitted mixed-
effects model, a quasi-F test, a by-participant analysis, a
by-item analysis, and an analysis that accepted the effect
of SOA to be significant only if both the F1 and the F2 test
were significant (F1 + F2, compare Forster & Dickinson,
1976). This anticonservatism of the t-test is clearly visible
in Table 4.

The only procedures with nominal Type I error rates
are the quasi-F test and the mixed-effects model with
MCMC sampling. For data sets with few observations, the
quasi-F test emerges as a good choice with somewhat
greater power.

> pvals.fnc(quasif, nsim = 10000)

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>jtj)

(Intercept) 540.91 540.85 498.58 583.50 0.0001 0.0000
SOAshort 22.41 22.38 %32.88 76.29 0.3638 0.1956

Table 3
Mean squares decomposition for the data exemplifying the use
of quasi-F ratios in Raaijmakers et al. (1999)

Df Sum Sq Mean Sq

SOA 1 8032.6 8032.6
Item 6 22174.5 3695.7
Subject 7 26251.6 3750.2
SOA*Subject 7 7586.7 1083.8
Item*Subject 42 4208.8 100.2
Residuals 0 0.0
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Most psycholinguistic experiments yield much larger
numbers of data points than in the present example.
Table 5 summarizes a second series of simulations in
which we increased the number of subjects to 20 and
the number of items to 40. As expected, the Type I error
rate for the mixed-effects models evaluated with tests
based on p-values using the t-test are now in accordance
with the nominal levels, and power is perhaps slightly
larger than the power of the quasi-F test. Evaluation
using MCMC sampling is conservative for this specific
fully balanced example. Depending on the costs of a
Type I error, the greater power of the t-test may offset
its slight anti-conservatism. In our experience, the differ-
ence between the two p-values becomes very small for
data sets with thousands instead of hundreds of observa-
tions. In analyses where MCMC-based evaluation and t-
based evaluation yield a very similar verdict across coef-
ficients, exceptional disagreement, with MCMC sampling
suggesting clear non-significance and the t-test suggest-
ing significance, is a diagnostic of an unstable and sus-
pect parameter. This is often confirmed by inspection
of the parameter’s posterior density.

It should be kept in mind that real life experiments are
characterized by missing data. Whereas the quasi-F test is
known to be vulnerable to missing data, mixed-effects
models are robust in this respect. For instance, in 1000
simulation runs (without an effect of SOA) in which

20% of the datapoints are randomly deleted before the
analyses are performed, the quasi-F test emerges as
slightly conservative (Type 1 error rate: 0.045 for
a = 0.05, 0.006 for a = 0.010), whereas the mixed-effects
model using the t test is on target (Type 1 error rate:
0.052 for a = 0.05, 0.010 for a = 0.01). Power is slightly
greater for the mixed analysis evaluating probability using
the t-test (a = 0.05: 0.84 versus 0.81 for the quasi-F test;
a = 0.01: 0.57 versus 0.54). See also, e.g., Pinheiro and
Bates (2000).

A Latin Square design

Another design discussed by Raaijmakers and col-
leagues is the Latin Square. They discuss a second con-
structed data set, with 12 words divided over 3 lists with
4 words each. These lists were rotated over participants,
such that a given participant was exposed to a list for
only one of three SOA conditions. There were 3 groups
of 4 participants, each group of participants was
exposed to unique combinations of list and SOA. Raaij-
makers and colleagues recommend a by-participant
analysis that proceeds on the basis of means obtained
by averaging over the words in the lists. An analysis of
variance is performed on the resulting data set which
lists, for each participant, three means; one for each
SOA condition. This gives rise to the ANOVA decomposi-

Table 4
Proportions (for 1000 simulation runs) of significant treatment effects for mixed-effects models (lmer), quasi-F tests, by-participant and
by-item analyses, and the combined F1 and F2 test, for simulated models with and without a treatment effect for a data set with 8
subjects and 8 items

lmer: p(t) lmer: p(MCMC) quasi-F By-subject By-item F1+F2

Without treatment effect
a = 0.05 0.088 0.032 0.055 0.310 0.081 0.079
a = 0.01 0.031 0.000 0.005 0.158 0.014 0.009

With treatment effect
a = 0.05 0.16 0.23
a = 0.01 0.04 0.09

Markov Chain Monte Carlo estimates of significance are denoted by MCMC. Power is tabulated only for models with nominal Type 1
error rates. Too high Type 1 error rates are shown in bold.

Table 5
Proportions (for 1000 simulation runs) of significant treatment effects for mixed-effects models (lmer), quasi-F tests, by-participant and
by-item analyses, and the combined F1 and F2 test, for simulated models with and without a treatment effect for 20 subjects and 40
items

lmer: p(t) lmer: p(MCMC) quasi-F Subject Item F1 + F2

Without treatment effect
a = 0.05 0.055 0.027 0.052 0.238 0.102 0.099
a = 0.01 0.013 0.001 0.009 0.120 0.036 0.036

With treatment effect
a = 0.05 0.823 0.681 0.809
a = 0.01 0.618 0.392 0.587

Power is tabulated only for models with nominal Type 1 error rates. Too high Type 1 error rates are shown in bold.
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tion shown in Table 6. The F test compares the mean
squares for SOA with the mean squares of the interac-
tion of SOA by List, and indicates that the effect of
SOA is not statistically significant (F(2,2) = 1.15,
p = 0.465). As the interaction of SOA by List is not sig-
nificant, Raaijmakers et al. (1999) pool the interaction
with the residual error. This results in a pooled error
term with 20 degrees of freedom, an F-value of 0.896,
and a slightly reduced p-value of 0.42.

A mixed-effects analysis of the same data set (avail-
able as latinsquare in the languageR package)
obviates the need for prior averaging. We fit a sequence
of models, decreasing the complexity of the random
effects structure step by step.

The likelihood ratio tests show that the model with Sub-
ject and Word as random effects has the right level of
complexity for this data set.

>summary(latinsquare.lmer4)
Random effects:

Groups Name Variance Std.Dev.

Word (Intercept) 754.542 27.4689
Subject (Intercept) 1476.820 38.4294
Residual 96.566 9.8268

number of obs: 144, groups: Word, 12; Subject, 12
Fixed effects:

Estimate Std. Error t value

(Intercept) 533.9583 13.7098 38.95
SOAmedium 2.1250 2.0059 1.06
SOAshort %0.4583 2.0059 %0.23

The summary of this model lists the three random
effects and the corresponding parameters: the variances
(and standard deviations) for the random intercepts
for subjects and items, and for the residual error. The
fixed-effects part of the model provides estimates for
the intercept and for the contrasts for medium and short

SOA compared to the reference level, long SOA. Inspec-
tion of the corresponding p-values shows that the
p-value based on the t-test and that based on MCMC sam-
pling are very similar, and the same holds for the p-value
produced by the F-test for the factor SOA

(F(2,141) = 0.944, p = 0.386) and the corresponding
p-value calculated from the MCMC samples (p = 0.391).
The mixed-effects analysis has slightly superior power

> latinsquare.lmer1 = lmer2(RT & SOA + (1jWord) + (1jSubject) + (1jGroup) + (1 + SOA jList),
data = latinsquare)
> latinsquare.lmer2 = lmer2(RT & SOA + (1jWord) + (1j Subject) + (1jGroup) + (1jList), data =
latinsquare)
> latinsquare.lmer3 = lmer2(RT& SOA + (1jWord) + (1 jSubject) + (1jGroup), data = latinsquare)
> latinsquare.lmer4 = lmer2(RT & SOA + (1jWord) + (1 jSubject), data = latinsquare)
> latinsquare.lmer5 = lmer2(RT & SOA + (1jSubject), data = latinsquare)
> anova(latinsquare.lmer1, latinsquare.lmer2, latinsquare.lmer3, latinsquare.lmer4,
latinsquare.lmer5)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

latinsquare.lmer5.p 4 1423.41 1435.29 %707.70
latinsquare.lmer4.p 5 1186.82 1201.67 %588.41 238.59 1 <2 e-16
latinsquare.lmer3.p 6 1188.82 1206.64 %588.41 0.00 1 1.000
latinsquare.lmer2.p 7 1190.82 1211.61 %588.41 1.379e-06 1 0.999
latinsquare.lmer1.p 12 1201.11 1236.75 %588.55 0.00 5 1.000

Table 6
Mean squares decomposition for the data with a Latin Square
design in Raaijmakers et al. (1999)

Df Sum Sq Mean Sq

Group 2 1696 848
SOA 2 46 23
List 2 3116 1558
Group*Subject 9 47305 5256
SOA*List 2 40 20
Residuals 18 527 29

> pvals.fnc(latinsquare.lmer4, nsim = 10000)

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>jtj)

(Intercept) 533.9583 534.0570 503.249 561.828 0.0001 0.0000
SOAmedium 2.1250 2.1258 %1.925 5.956 0.2934 0.2912
SOAshort %0.4583 %0.4086 %4.331 3.589 0.8446 0.8196
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compared to the F1 analysis proposed by Raaijmakers
et al. (1999), as illustrated in Table 7, which lists Type
I error rate and power for 1000 simulation runs without
and with an effect of SOA. Simulated datasets were con-
structed using the parameters given by latin-
square.lmer4. The upper half of Table 7 shows
power and Type I error rate for the situation in which
the F1 analysis includes the interaction of SOA by List,
the lower half reports the case in which this interaction is
pooled with the residual error. Even for the most power-
ful test suggested by Raaijmakers et al. (1999), the
mixed-effects analysis emerges with slightly better
power, while maintaining the nominal Type-I error rate.

Further pooling of non-explanatory parameters in
the F1 approach may be expected to lead to further con-
vergence of power. The key point that we emphasize
here is that the mixed-effects approach obtains this
power without prior averaging. As a consequence, it is
only the mixed-effects approach that affords the possibil-
ity of bringing predictors for longitudinal effects and
inter-trial dependencies into the model. Likewise, the

possibility of bringing covariates gauging properties of
the individual words into the model is restricted to the
mixed-effects analysis.

A split-plot design

Another design often encountered in psycholinguis-
tic studies is the split plot design. Priming studies often
make use of a counterbalancing procedure with two
sets of materials. Words are primed by a related prime
in List A and by an unrelated prime in List B, and vice
versa. Different subjects are tested on each list. This is
a split-plot design, in the sense that the factor List is
between subjects and the factor Priming within sub-
jects. The following example presents an analysis of
an artificial dataset (dat, available as splitplot in
the languageR package) with 20 subjects, 40 items.
A series of likelihood ratio tests on a sequence of mod-
els with decreasing complex random effects structure
shows that a model with random intercepts for subject
and item suffices.

Table 7
Proportions (out of 1000 simulation runs) of significant F-tests for a Latin Square design with mixed-effects models (lmer) and a by-
subject analyis (F1)

Without SOA With SOA

lmer: p(F) lmer: p(MCMC) F1 lmer: p(F) lmer: p(MCMC) F1

a = 0.05 With 0.055 0.053 0.052 0.262 0.257 0.092
a = 0.01 With 0.011 0.011 0.010 0.082 0.080 0.020

a = 0.05 Without 0.038 0.036 0.043 0.249 0.239 0.215
a = 0.01 Without 0.010 0.009 0.006 0.094 0.091 0.065

The upper part reports simulations in which the F1 analysis includes the interaction of List by SOA (With), the lower part reports
simulations in which for the F1 analysis this interaction is absent (Without).

> dat.lmer1 = lmer(RT list * priming + (1 + primingjsubjects) + (1 + listjitems), data = dat)
> dat.lmer2 = lmer(RT list * priming + (1 + primingjsubjects) + (1jitems), data = dat)
> dat.lmer3 = lmer(RT list * priming + (1jsubjects) + (1jitems), data = dat)
> dat.lmer4 = lmer(RT list * priming + (1jsubjects), data = dat)
> anova(dat.lmer1, dat.lmer2, dat.lmer3, dat.lmer4)

Table 8
Type I error rate and power for mixed-effects modeling of 1000 simulated data sets with a split-plot design, for the full data set and a
data set with 20% missing data

Type I error rate Power

Full Missing Full Missing

a = 0.05 0.046 (0.046) 0.035 (0.031) 0.999 (0.999) 0.995 (0.993)
a = 0.01 0.013 (0.011) 0.009 (0.007) 0.993 (0.993) 0.985 (0.982)

Evaluation based on Markov chain Monte Carlo sampling are listed in parentheses.
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The estimates are close to the parameters that generated
the simulated data: ri = 20, rs = 50, r = 80, bint = 400,
bpriming = 30, blist = 18.5, blist:priming = 0.

Table 8 lists power and Type I error rate with respect to
the priming effect for 1000 simulation runs with a mixed-
effect model, run once with the full data set, and once with
20% of the data points randomly deleted, using the same
parameters that generated the above data set. It is clear
that with the low level of by-observation noise, the pres-
ence of a priming effect is almost always detected. Power
decreases only slightly for the case with missing data. Even
though power is at ceiling, the Type I error rate is in accor-
dance with the nominal levels. Note the similarity between
evaluation of significance based on the (anticonservative)
t-test and evaluation based on Markov chain Monte Car-
lo sampling. This example illustrates the robustness of
mixed effects models with respect to missing data: The
present results were obtained without any data pruning
and without any form of imputation.

A multiple regression design

Multiple regression designs with subjects and items,
and with predictors that are tied to the items (e.g., fre-
quency and length for items that are words) have tradi-
tionally been analyzed in two ways. One approach
aggregates over subjects to obtain item means, and then
proceeds with standard ordinary least squares regression.
We refer to this as by-item regression. Another approach,
advocated by Lorch and Myers (1990), is to fit separate
regression models to the data sets elicited from the indi-
vidual participants. The significance of a given predictor

is assessed by means of a one-sample t-test applied to
the coefficients of this predictor in the individual regres-
sion models. We refer to this procedure as by-participant
regression. It is also known under the name of random
regression. (From our perspective, these procedures com-
bine precise and imprecise information on an equal foot-
ing.) Some studies report both by-item and by-participant
regression models (e.g., Alegre & Gordon, 1999).

The by-participant regression is widely regarded as
superior to the by-item regression. However, the by-par-
ticipant regression does not take item-variability into
account. To see this, compare an experiment in which
each participant responds to the same set of words to an
experiment in which each participant responds to a differ-
ent set of words. When the same lexical predictors are used
in both experiments, the by-participant analysis proceeds
in exactly the same way for both. But whereas this
approach is correct for the second experiment, it ignores
a systematic source of variation in the case of the first
experiment.

A simulation study illustrates that ignoring item var-
iability that is actually present in the data may lead to
unacceptably high Type I error rates. In this simulation
study, we considered three predictors, X, Y and Z tied to
20 items, each of which was presented to 10 participants.
In one set of simulation runs, these predictors had beta
weights 2, 6 and 4. In a second set of simulation runs,
the beta weight for Z was set to zero. We were interested
in the power and Type I error rates for Z for by-partic-
ipant and for by-item regression, and for two different
mixed-effects models. The first mixed-effects model that
we considered included crossed random effects for par-

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

dat.lmer4.p 5 9429.0 9452.4 %4709.5
dat.lmer3.p 6 9415.0 9443.1 %4701.5 15.9912 1 6.364e-05
dat.lmer2.p 8 9418.8 9456.3 %4701.4 0.1190 2 0.9423
dat.lmer1.p 10 9419.5 9466.3 %4699.7 3.3912 2 0.1835

> print(dat.lmer3, corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.

items (Intercept) 447.15 21.146
subjects (Intercept) 2123.82 46.085
Residual 6729.24 82.032

Number of obs: 800, groups: items, 40; subjects, 20
Fixed effects:

Estimate Std. Error t value
(Intercept) 362.658 16.382 22.137
listlistB 18.243 23.168 0.787
primingunprimed 31.975 10.583 3.021
listlistB:
primingunprimed

%6.318 17.704 %0.357
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ticipant and item with random intercepts only. This
model reflected exactly the structure implemented in
the simulated data. A second mixed-effects model
ignored the item structure in the data, and included only
participant as a random effect. This model is the mixed-
effects analogue to the by-participant regression.

Table 9 reports the proportions of simulation runs
(on a total of 1000 runs) in which the coefficients of
the regression model were reported as significantly dif-
ferent from zero at the 5% and 1% significance levels.
The upper part of Table 9 reports the proportions for
simulated data in which an effect of Z was absent, with
bZ = 0. The lower part of the table lists the correspond-
ing proportions for simulations in which Z was present
(bZ = 4). The bolded numbers in the upper part of the
table highlight the very high Type I error rates for mod-
els that ignore by-item variability that is actually present
in the data. The only models that come close to the nom-
inal Type I error rates are the mixed-effects model with
crossed random effects for subject and item, and the
by-item regression. The lower half of Table 9 shows that
of these three models, the power of the mixed-effects
model is consistently greater than that of the by-item
regression. (The greater power of the by-subject models,
shown in grey, is irrelevant given their unacceptably
high Type I error rates.)

Of the two mixed-effects models, it is only the model
with crossed random effects that provides correct esti-
mates of the standard deviations characterizing the ran-
dom effects, as shown in Table 10. When the item
random effect is ignored (lmerS), the standard deviation
of the residual error is overestimated substantially, and

the standard deviation for the subject random effect is
slightly underestimated.

We note that for real datasets, mixed-effects regres-
sion offers the possibility to include not only item-bound
predictors, but also predictors tied to the subjects, as
well as predictors capturing inter-trial dependencies
and longitudinal effects.

Further issues

Some authors, e.g., Quené and Van den Bergh (2004),
have argued that in experiments with subjects and items,
items should be analyzed as nested under subjects. The
nesting of items under participants creates a hierarchical
mixed-effects model. Nesting is argued to be justified on
the grounds that items may vary in familiarity across
participants. For instance, if items are words, than lexi-
cal familiarity is known to vary considerably across
occupations (see, e.g., Gardner, Rothkopf, Lapan, &
Lafferty, 1987). Technically, however, nesting amounts
to the strong assumption that there need not be any
commonality at all for a given item across participants.

This strong assumption is justified only when the pre-
dictors in the regression model are treatments adminis-
tered to items that otherwise do not vary on
dimensions that might in any way affect the outcome
of the experiment. For many linguistic items, predictors
are intrinsically bound to the items. For instance, when
items are words, predictors such as word frequency and
word length are not treatments administered to items.
Instead, these predictors gauge aspects of a word’s lexi-
cal properties. Furthermore, for many current studies it
is unlikely that they fully exhaust all properties that co-
determine lexical processing. In these circumstances, it is
highly likely that there is a non-negligible residue of
item-bound properties that are not brought into the
model formulation. Hence a random effect for word
should be considered seriously. Fortunately, mixed-
effects models allow the researcher to explicitly test
whether a random effect for Item is required by means
of a likelihood ratio test comparing a model with and
without a random effect for item. In our experience, such
tests almost invariably show that a random effect for
item is required, and the resulting models provide a tigh-
ter fit to the data.

Mixed-effects regression with crossed random effects
for participants and items have further advantages to
offer. One advantage is shrinkage estimates for the

Table 9
Proportion of simulation runs (out of 1000) in which the
coefficients for the intercept and the predictors X, Y and Z are
reported as significantly different from zero according to four
multiple regression models

lmer: mixed-effect regression with crossed random effects for
subject and item; lmerS: mixed-effect model with subject as ran-
dom effect; Subj: by-subject regression; Item: by-item regression.

Table 10
Actual and estimated standard deviations for simulated regres-
sion data

Item Subject Residual

Data 40 80 50
lmer 39.35 77.22 49.84
lmerS 76.74 62.05
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BLUPs (the subject and item specific adjustments to inter-
cepts and slopes), which allow enhanced prediction for
these items and subjects (see, e.g., Baayen, 2008, for fur-
ther discussion). Another important advantage is the
possibility to include simultaneously predictors that
are tied to the items (e.g., frequency, length) and predic-
tors that are tied to participants (e.g., handedness, age,
gender). Mixed-effects models have also been extended
to generalized linear models and can hence be used effi-
ciently to model binary response data such as accuracy
in lexical decision (see Jaeger, this volume).

To conclude, we briefly address the question of the
extent to which an effect observed to be significant in a
mixed-effects analysis generalizes across both subjects
and items (see Forster, this issue). The traditional inter-
pretation of the F1 (by-subject) and F2 (by-item) analy-
ses is that significance in the F1 analysis would indicate
that the effect is significant for all subjects, and that the
F2 analysis would indicate that the effect holds for all
items. We believe this interpretation is incorrect. In fact,
even if we replace the F1+F2 procedure by a mixed-
effects model, the inference that the effect would general-
ize across all subjects and items remains incorrect. The
fixed-effect coefficients in a mixed-effect model are esti-
mates of the intercept, slopes (for numeric predictors)
or contrasts (for factors) in the population for the aver-
age, unknown subject and the average, unknown item.
Individual subjects and items may have intercepts and
slopes that diverge considerably from the population
means. For ease of exposition, we distinguish three pos-
sible states of affairs for what in the traditional terminol-
ogy would by described as an Effect by Item interaction.

First, it is conceivable that the BLUPs for a given fixed-
effect coefficient, when added to that coefficient, never
change its sign. In this situation, the effect indeed gener-
alizes across all subjects (or items) sampled in the exper-
iment. Other things being equal, the partial effect of the
predictor quantified by this coefficient will be highly
significant.

Second, situations arise in which adding the BLUPs to
a fixed coefficient results in a majority of by-subject (or
by-item) coefficients that have the same sign as the pop-
ulation estimate, in combination with a relatively small
minority of by-subject (or by-item) coefficients with the
opposite sign. The partial effect represented by the pop-
ulation coefficient will still be significant, but there will
be less reason for surprise. The effect generalizes to a
majority, but not to all subjects or items. Nevertheless,
we can be confident about the magnitude and sign of
the effect on average, for unknown subjects or items, if
the subjects and items are representative of the popula-
tion from which they are sampled.

Third, the by-subject (or by-item) coefficients
obtained by taking the BLUPs into account may result
in a set of coefficients with roughly equal numbers of
coefficients that are positive and coefficients that are

negative. In this situation, the main effect (for a numeric
predictor or a binary contrast) will not be significant, in
contradistinction to the significance of the random effect
for the slopes or contrasts at issue. In this situation,
there is a real and potentially important effect, but aver-
aged across subjects or items, it cancels out to zero.

In the field of memory and language, experiments
that do not yield a significant main effect are generally
considered to have failed. However, an experiment
resulting in this third state of affairs may constitute a
positive step forward for our understanding of language
and language processing. Consider, by way of example,
a pharmaceutical company developing a new medicine,
and suppose this medicine has adverse side effects for
some, but highly beneficial effects for other patients—
patients for which it is an effective life-saver. The com-
pany could decide not to market the medicine because
there is no main effect. However, they can actually make
substantial profit by bringing it on the market with
warnings for adverse side effects and proper distribu-
tional controls.

Returning to our own field, we know that no two
brains are the same, and that different brains have differ-
ent developmental histories. Although in the initial
stages of research the available technology may only
reveal the most robust main effects, the more our
research advances, the more likely it will become that
we will be able to observe systematic individual differ-
ences. Ultimately, we will need to bring these individual
differences into our theories. Mixed-effect models have
been developed to capture individual differences in a
principled way, while at the same time allowing general-
izations across populations. Instead of discarding indi-
vidual differences across subjects and items as an
uninteresting and disappointing nuisance, we should
embrace them. It is not to the advantage of scientific
progress if systematic variation is systematically ignored.

Hierarchical models in developmental and educational
psychology

Thus far, we have focussed on designs with crossed
random effects for subjects and items. In educational
and developmental research, designs with nested ran-
dom effects are often used, such as the natural hierarchy
formed by students nested within a classroom (Gold-
stein, 1987). Such designs can also be handled by
mixed-effects models, which are then often referred to
as hierarchical linear models or multilevel models.

Studies in educational settings are often focused on
learning over time, and techniques developed for this
type of data often attempt to characterize how individu-
als’ performance or knowledge changes over time,
termed the analysis of growth curves (Goldstein, 1987,
1995; Goldstein et al., 1993; Nutall, Goldstein, Prosser,
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& Rasbash, 1989; Willet, Singer, & Martin, 1998).
Examples of this include the assessment of different
teaching techniques on students performance (Aitkin,
Anderson, & Hinde, 1981), and the comparison of the
effectiveness of different schools (Aitkin & Longford,
1986). Goldstein et al. (1993) used multilevel techniques
to study the differences between schools and students
when adjusting for pre-existing differences when students
entered classes. For a methodological discussion of the
use of these models, see the collection of articles in the
Summer 1995 special issue of Journal of Educational and
Behavioral Statistics on hierarchical linear models, e.g.,
Kreft (1995). Singer (1998) provides a practical introduc-
tion to multilevel models including demonstration code,
and Collins (2006) provides a recent overview of issues
in longitudinal data analysis involving these models.
Finally, Fielding and Goldstein (2006) provide a compre-
hensive overview of multilevel and cross-classified models
applied to education research, including a brief software
review. West et al. (2007) provide a comprehensive soft-
ware review for nested mixed-effects models.

These types of models are also applicable to psycho-
linguistic research, especially in studies of developmental
change. Individual speakers from a language community
are often members of a hierarchy, e.g., language:dia-
lect:family:speaker, and many studies focus on learning
or language acquisition, and thus analysis of change or
development is important. Huttenlocher, Haight, Bryk,
and Seltzer (1991) used multilevel models to assess the
influence of parental or caregiver speech on vocabulary
growth, for example. Boyle and Willms (2001) provide
an introduction to the use of multilevel models to study
developmental change, with an emphasis on growth
curve modeling and discrete outcomes. Raudenbush
(2001) reviews techniques for analyzing longitudinal
designs in which repeated measures are used. Recently,
Misangyi, LePine, Algina, and Goeddeke (2006) com-
pared repeated measures regression to multivariate
ANOVA (MANOVA) and multilevel analysis in research
designs typical for organizational and behavioral
research, and concluded that multilevel analysis can pro-
vide equivalent results as MANOVA, and in cases where
specific assumptions about variance-covariance struc-
tures could be made, or in cases where missing values
were present, that multilevel modeling is a better analy-
sis strategy and in some cases a necessary strategy (see
also Kreft & de Leeuw, 1998 and Snijders & Bosker,
1999).

Finally, a vast body of work in educational psychol-
ogy concerns test construction and the selection of test
items (Lord & Novick, 1968). Although it is beyond
the scope of this article to review this work, it should
be noted that work within generalizability theory (Cron-
bach, Gleser, Nanda, & Rajaratnam, 1972) has been
concerned with the problem of crossed subject and item
factors using random effects models (Schroeder & Haks-

tian, 1990). For a recent application of the software con-
sidered here to item response theory, see Doran, Bates,
Bliese, and Dowling (2007), and for the application of
hierarchical models to joint response type and response
time measures, see Fox, Entink, and van der Linden
(2007).

Mixed-effects models in neuroimaging

In neuroimaging, two-level or mixed effects models
are now a standard analysis technique (Friston et al.,
2002a, 2002b; Worsley et al., 2002), and are used in con-
junction with Gaussian Random Field theory to make
inferences about activity patterns in very large data sets
(voxels from fMRI scans). These techniques are formally
comparable to the techniques that are advocated in this
paper (Friston, Stephan, Lund, Morcom, & Kiebel,
2005). Interestingly, however, the treatment of stimuli
as random effects has not been widely addressed in the
imaging and physiological community, until recently
(Bedny, Aguirre, & Thompson-Schill, 2007).

In imaging studies that compare experimental condi-
tions, for example, statistical parameter maps (SPM; Fris-
ton et al., 1995) are calculated based on successively
recorded time series for the different experimental condi-
tions. A hypothesized hemodynamic response function
is convolved with a function that encodes the experimen-
tal design matrix, and this forms a regressor for each of
the time series in each voxel. Significant parameters for
the regressors are taken as evidence of activity in the
voxels that exhibit greater or less activity than is
expected based on the null hypothesis of no activity dif-
ference between conditions. The logic behind these tests
is that a rejection of the null hypothesis for a region is
evidence for a difference in activity in that region.

Neuroimaging designs are often similar to cognitive
psychology designs, but the dimension of the response
variable is much larger and the nature of the response
has different statistical properties. However, this is not
crucial for the application of mixed effects models. In
fact, it shows the technique can scale to problems that
involve very large datasets.

A prototypical case of a fixed effects analysis in fMRI
would test whether a image contrast is statistically sig-
nificant within a single subject over trials. This would
be analogous to a psychophysics experiment using only
a few participants, or a patient case study. For random
effect analysis the parameters calculated from the single
participants are used in a mixed model to test whether a
contrast is significant over participants, in order to test
whether the contrasts reflects a difference in the popula-
tion from which the participants were sampled. This is
analogous to how cognitive psychology experimenters
treat mean RTs, for example. A common analysis strat-
egy is to calculate a single parameter for each participant
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in an RT study, and then analyze this data in (what in
the neuroimaging community is called) a random effects
analysis.

The estimation methods used to calculate the statisti-
cal parameters of these models include Maximum Like-
lihood or Restricted Maximum Likelihood, just as in the
application of the multilevel models used in education
research described earlier. One reason that these tech-
niques are used is to account for correlation between
successive measurements in the imaging time series.
These corrections are similar to corrections familiar to
psychologists for non-sphericity (Greenhouse & Geisser,
1958).

Similar analysis concerns are present within electro-
physiology. In the past, journal policy in psychophysio-
logical research has dealt with the problems posed by
repeated measures experimental designs by suggesting
that researchers adopt statistical procedures that take
into account the correlated data obtained from these
designs (Jennings, 1987; Vasey & Thayer, 1987). Mixed
effects models are less commonly applied in psychophys-
iological research, as the most common techniques are
the traditional univariate ANOVA with adjustments or
multivariate ANOVA (Dien & Santuzzi, 2004), but some
researchers have advocated them to deal with repeated
measures data. For example, Bagiella, Sloan, and Heit-
jan (2000) suggest that mixed effects models have advan-
tages over more traditional techniques for EEG data
analysis.

The current practice of psychophysiologists and neu-
roimaging researchers typically ignores the issue of
whether linguistic materials should be modeled with
fixed or random effect models. Thus, while there are
techniques available for modeling stimuli as random
effects, it is not yet current practice in neuroimaging
and psychophysiology to do so. This represents a tre-
mendous opportunity for methodological development
in language-related imaging experiments, as psycholin-
guists have considerable experience in modeling stimulus
characteristics.

Cognitive psychologists and neuroscientists might
reasonably assume that the language-as-a-fixed-effect
debate is only a concern when linguistic materials are
used, given that most discussion to date has taken place
in the context of linguistically-motivated experiments.
This assumption is too narrow, however, because natu-
ralistic stimuli from many domains are drawn from
populations.

Consider a researcher interested in the electrophysiol-
ogy of face perception. She designs an experiment to test
whether an ERP component such as the N170 in response
to faces has a different amplitude in one of two face con-
ditions, normal and scrambled form. She obtains a set of
images from a database, arranges them according to her
experimental design, and proceeds to present each pic-
ture in a face-detection EEG experiment, analogous to

the way that a psycholinguist would present words and
non-words to a participant in a lexical decision experi-
ment. The images presented in this experiment would
be a sample of all possible human faces. It is not contro-
versial that human participants are to be modeled as a
random variable in psychological experiments. Pictures
of human faces are images of a random variable, pre-
sented as stimuli. Thus, it should be no source of contro-
versy that naturalistic face stimuli are also a random
variable, and should be modeled as a random effect, just
like participants. For the sake of consistency, if human
participants, faces, and speech are to be considered ran-
dom variables, then objects, artifacts, and scenes might
just as well be considered random variables (also pointed
out by Raaijmakers, 2003).

Any naturalistic stimulus which is a member of a
population of stimuli which has not been exhaustively
sampled should be considered a random variable for
the purposes of an experiment. Note that random in this
sense means STOCHASTIC, a variable subject to probabilis-
tic variation, rather than randomly sampled. A random
sample is one method to draw samples from a popula-
tion and assign them to experimental condition. How-
ever, stimuli may have stochastic characteristics
whether or not they are randomly sampled or not. Par-
ticipants have stochastic characteristics, as well, whether
they are randomly sampled or not. Therefore, the pres-
ent debate about the best way to model random effects
of stimuli is wider than previously has been appreciated,
and should be seen as part of the debate over the use of
naturalistic stimuli in sensory neurophysiology as well
(Felsen & Yang, 2005; Ruse & Movshon, 2005).

Concluding remarks

We have described the advantages that mixed-effects
models with crossed random effects for subject and item
offer to the analysis of experimental data.

The most important advantage of mixed-effects mod-
els is that they allow the researcher to simultaneously
consider all factors that potentially contribute to the
understanding of the structure of the data. These factors
comprise not only standard fixed-effects factors typically
manipulated in psycholinguistic experiments, but also
covariates bound to the items (e.g., frequency, complex-
ity) and the subjects (e.g., age, sex). Furthermore, local
dependencies between the successive trials in an experi-
ment can be brought into the model, and the effects of
prior exposure to related or identical stimuli (as in
long-distance priming) can be taken into account as
well. (For applications in eye-movement research, see
Kliegl, 2007, and Kliegl, Risse, & Laubrock, 2007).
Mixed-effects models may offer substantially enhanced
insight into how subjects are performing in the course
of an experiment, for instance, whether they are adjust-
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ing their behavior as the experiment proceeds to opti-
mize performance. Procedures requiring prior averaging
across subjects or items, or procedures that are limited
to strictly factorial designs, cannot provide the
researcher with the analytical depth typically provided
by a mixed-effects analysis.

For data with not too small numbers of observations,
mixed-effects models may provide modest enhanced
power, as illustrated for a Latin Square design in the
present study. For regression and analysis of covariance,
mixed-effects modeling protects against inflated signifi-
cance for data sets with significant by-item random
effects structure. Other advantages of mixed-effects mod-
eling that we have mentioned only in passing are the
principled way in which non-independence (asphericity)
is handled through the variance-covariance structure of
the model, and the provision of shrinkage estimates
for the by-subject and by-item adjustments to intercept
and slopes, which allows enhanced precision in
prediction.

An important property of mixed-effects modeling is
that it is possible to fit models to large, unbalanced data
sets. This allows researchers to investigate not only data
elicited under controlled experimental conditions, but to
also study naturalistic data, such as corpora of eye-
movement data. Markov chain Monte Carlo sampling
from the posterior distribution of the parameters is an
efficient technique to evaluate fitted models with respect
to the stability of their parameters and to distinguish
between robust parameters (with narrow highest poster-
ior density intervals) from superfluous parameters (with
very broad density intervals).

Mixed-effects modeling is a highly active research
field. Well-established algorithms and techniques for
parameter estimation are now widely available. One
question that is still hotly debated is the appropriate
number of degrees of freedom for the fixed-effects fac-
tors. Different software packages make use of or even
offer different choices. We have emphasized the impor-
tance of Markov chain Monte Carlo sampling as fast
and efficient way (compared to, e.g., the bootstrap) to
evaluate a model’s parameters. In our experience, p-val-
ues based on MCMC sampling and p-values based on
the upper bound of the degrees of freedom tend to be
very similar for all but the smallest samples.

An important goal driving the development of the
lme4 package in R, the software that we have intro-
duced and advocated here, is to make it possible to deal
realistically with the parameters of models fit to large,
unbalanced data sets. Bates (2007a) provides an example
of a data set with about 1.7 million observations, 55000
‘‘subjects” (distinct students at a major university over a
5 year period) and 7900 ‘‘items” (instructors). The data
are unbalanced and the subject and item factors are par-
tially crossed. Fitting a simple model with random
effects for subject and for item took only about an hour

on a fast server computer with substantial memory.
Thanks to the possibility of handling very large data
sets, we anticipate mixed-effects modeling to become
increasingly important for improved modeling of spatial
and temporal dependencies in neuroimaging studies, as
well as for the study of naturalistic corpus-based data
in chronometric tasks and eye-movement research. In
short, mixed-effects modeling is emerging not only as a
useful but also as an actually useable tool for coming
to a comprehensive understanding of the quantitative
structure of highly complex data sets.

A note on parameter estimation

The mathematical details of model fitting with mixed effects
models are beyond the scope of the present paper (see Bates,
2007, for an introduction), we note here that fitting the model
involves finding the right balance between the complexity of
the model and faithfulness to the data. Model complexity is
determined primarily by the parameters that we invest in the
random effects structure, basically the parameters that define
the relative variance-covariance matrix R in Eq. (10). Interest-
ingly, the profiled deviance function, which is negative twice
the log-likelihood of model (10) evaluated at R, b̂ and r̂2 for
a given set of parameters, can be estimated without having to
solve for b̂ or b̂. The profiled deviance function has two compo-
nents, one that measures model complexity and one that mea-
sures fidelity of the fitted values to the observed data. This is
illustrated in Fig. 2.

Each panel has the relative standard deviation of the item
random effect (i.e., ri/r) on the horizontal axis, and the relative
standard deviation of the subject random effect (rs/r) on the
vertical axis. First consider the rightmost panel. As we allow
these two relative standard deviations to increase, the fidelity
to the data increases and the deviance (the logarithm of the
penalized residual sum of squares) decreases. In the contour
plot, darker shades of grey represent greater fidelity and
decreased deviance, and it is easy to see that a better fit is
obtained for higher values for the item and subject relative stan-
dard deviations. However, increasing these relative standard
deviations leads to a model that is more complex.2 This is
shown in the middle panel, which plots the contours of the
model complexity, the logarithm of the determinant of a matrix
derived from the random effects matrix Z. Darker shades of
grey are now found in the lower left corner, instead of in the
upper right corner. The left panel of Fig. 2 shows the compro-
mise between model complexity and fidelity to the data in the
form of the deviance function that is minimized at the maxi-

2 The relation between model complexity and the magnitudes
of the item and subject relative standard deviations is most
easily appreciated by considering the limiting case in which
both relative standard deviations are zero. These two param-
eters can now be removed from the symbolic specification of the
model. This reduction in the number of parameters is the
familiar index of model simplification.
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mum likelihood estimates. The + symbols in each panel denote
the values of the deviance components at the maximum likeli-
hood estimates.
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