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Abstract

This paper identifies several serious problems with the widespread use of ANOVAs for the analysis of categorical
outcome variables such as forced-choice variables, question-answer accuracy, choice in production (e.g. in syntactic
priming research), et cetera. I show that even after applying the arcsine-square-root transformation to proportional
data, ANOVA can yield spurious results. I discuss conceptual issues underlying these problems and alternatives pro-
vided by modern statistics. Specifically, I introduce ordinary logit models (i.e. logistic regression), which are well-sui-
ted to analyze categorical data and offer many advantages over ANOVA. Unfortunately, ordinary logit models do
not include random effect modeling. To address this issue, I describe mixed logit models (Generalized Linear Mixed
Models for binomially distributed outcomes, Breslow and Clayton [Breslow, N. E. & Clayton, D. G. (1993). Approx-
imate inference in generalized linear mixed models. Journal of the American Statistical Society 88(421), 9–25]), which
combine the advantages of ordinary logit models with the ability to account for random subject and item effects in
one step of analysis. Throughout the paper, I use a psycholinguistic data set to compare the different statistical
methods.
� 2007 Elsevier Inc. All rights reserved.
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Introduction

In the psychological sciences, training in the statisti-
cal analysis of continuous outcomes (i.e. responses or
independent variables) is a fundamental part of our edu-
cation. The same cannot be said about categorical data

analysis (Agresti, 2002; henceforth CDA), the analysis
of outcomes that are either inherently categorical (e.g.
the response to a yes/no question) or measured in a
way that results in categorical grouping (e.g. grouping
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neurons into different bins based on their firing rates).
CDA is common in all behavioral sciences. For example,
much research on language production has investigated
influences on speakers’ choice between two or more pos-
sible structures (see e.g. research on syntactic persis-
tence, Bock, 1986; Pickering & Branigan, 1998; among
many others; or in research on speech errors). For lan-
guage comprehension, examples of research on categor-
ical outcomes include eye-tracking experiments (first
fixations), picture identification tasks to test semantic
understanding, and, of course, comprehension ques-
tions. More generally, any kind of forced-choice task,
such as multiple-choice questions, and any count data
constitute categorical data.
d.
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Despite this preponderance of categorical data, the
use of statistical analyses that have long been known
to be questionable for CDA (such as analysis of var-
iance, ANOVA) is still commonplace in our field.
While there are powerful modern methods designed
for CDA (e.g. ordinary and mixed logit models; see
below), they are considered too complicated or simply
unnecessary.

There is a widely-held belief that categorical out-
comes can safely be analyzed using ANOVA, if the arc-
sine-square-root transformation (Cochran, 1940; Rao,
1960; Winer, Brown, & Michels, 1971) is applied. This
belief is misleading: even ANOVAs over arcsine-square-

root transformed proportions of categorical outcomes

(see below) can lead to spurious null results and spurious

significances. These spurious results go beyond the nor-
mal chance of Type I and Type II errors. The arcsine-
square-root and other transformations (e.g. by using
the empirical logit transformation, Haldane, 1955;
Cox, 1970) are simply approximations that were pri-
marily intended to reduce costly computation time. In
an age of cheap computing at everyone’s fingertips,
we can abandon ANOVA for CDA. Modern statistics
provide us with alternatives that are in many ways
superior.

This paper provides an informal introduction to
one such method, generalized linear mixed models
with a logit link function, henceforth mixed logit mod-

els (DebRoy & Bates, 2004; Bates & Sarkar, 2007;
Breslow & Clayton, 1993; see also conditional logistic
regression, Dixon, this issue; for an overview of other
methods, see Agresti, 2002). Mixed logit models are a
generalization of logistic regression. Like ordinary
logistic regression (Cox, 1958, 1970; Dyke & Patter-
son, 1952; henceforth ordinary logit models), they
are well-suited for the analysis of categorical out-
comes. Going beyond ordinary logit models, however,
mixed logit models include random effects, such as
subject and item effects. I introduce both ordinary
and mixed logit models and compare them to
ANOVA over untransformed and arcsine-square-root
transformed proportions using data from a psycholin-
guistics study (Arnon, submitted for publication). All
analyses were performed using the statistics software
package R (R Development Core Team, 2005). The
R code is available from the author.
The inadequacy of ANOVA over categorical outcomes

Issues with ANOVAs and, more generally, linear
models over categorical data have been known for a
long time (e.g. Cochran, 1940; Rao, 1960; Winer
et al., 1971; for summaries, see Agresti, 2002: 120;
Hogg & Craig, 1995). I discuss problems with the
interpretability of ANOVAs over categorical data
and then show that these problems stem from concep-
tual issues.

Interpretability of ANOVA over categorical outcomes

ANOVA compares the means of different experimen-
tal conditions and determines whether to reject the
hypothesis that the conditions have the same population
means given the observed sample variances within and
between the conditions. For continuous outcomes, the
means, variances, and the confidence intervals have
straightforward interpretations. But what happens if
the outcome is categorical? For example, we may be
interested in whether subjects answer a question cor-
rectly depending on the experimental condition. So, we
may observe that of the 10 elicited answers, 8 are correct

and 2 are incorrect. What is the mean and variance of 8
correct answers and 2 incorrect answers? We can code
one of the outcomes, e.g. correct answers, as 1 and the
other outcome, e.g. wrong answers, as 0. In that case,
we can calculate a mean (here 0.8) and variance (here
0.18). The mean is apparently straightforwardly inter-
preted as the mean proportion of correct answers (or
percentages of correct answers if multiplied by 100).

The current standard for CDA in psychology fol-
lows the aforementioned logic. Categorical outcomes
are analyzed using subject and item ANOVAs (F1
and F2) over proportions or percentages. The approach
is seemingly intuitive and, by now, so widespread that
it is hard to imagine that there is any problem with it.
Unfortunately, that is not the case. ANOVAs over pro-
portions can lead to hard-to-interpret results because
confidence intervals can extend beyond the interpret-
able values between 0 and 1. For the above example,
a 95% confidence interval would range from 0.52 to
1.08 (=0.8 ± 0.275), rendering an interpretation of the
outcome variable as a proportion of correct answers
impossible (proportions above 1 are not defined). One
way to think about the problem of interpretability is
that ANOVAs attribute probability mass to events that
can never occur, thereby likely underestimating the
probability mass over events that actually can occur.
This intuition points at the most crucial problem with
ANOVAs over proportions of categorical outcomes.
ANOVA over proportions easily leads to spurious
results.

Categorical outcomes violate ANOVA’s assumptions

The inappropriateness of ANOVAs over categorical
data can be derived on theoretical grounds. Assume a
binary outcome (e.g. correct or incorrect answers to
yes/no-questions) that is binomially distributed; that is,
for every trial there is a probability p that the answer will
be correct. Then the probability of k correct answers in n

trials is given by the following function:
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f ðk; n; pÞ ¼
n

k

� �
pkð1� pÞn�k ¼ n!

k!ðn� kÞ! pkð1� pÞn�k

ð1Þ

The population mean and variance of a binomially dis-
tributed variable X are given in (2) and (3).

lX ¼ n½1p þ 0ðp � 1Þ� ¼ np ð2Þ
r2

X ¼ n½ð1� pÞ2p þ ð0� pÞ2ð1� pÞ� ¼ npð1� pÞ ð3Þ

The expected sample proportion p over n trials is given
by dividing lX by the number of trials n, and hence is
p. Similarly, the variance of the sample proportion is a
function of p:

r2
P ¼

pð1� pÞ
n

ð4Þ

From (4) it follows that the variance of the sample propor-
tions will be highest for p = .5 (the product of n numbers x

that add up to 1 is highest if x1=. . .=xn) and will decrease
symmetrically as we approach 0 or 1. This is illustrated in
Fig. 1. Note that the shape of the curve and the location of
its maximum are determined by p alone.

Now assume that we have two samples elicited under
different conditions. In one condition, the probability
that a trial will yield a correct answer is p1, in the other
condition it is p2. For example, if p1 = .45 and p2 = .8,
then:

r2
P ðp1Þ ¼

p1ð1� p1Þ
n

¼ 0:2475

n
>

0:16

n
¼ p2ð1� p2Þ

n
¼ r2

P ðp2Þ ð5Þ

In other words, if the probability of a binomially distrib-
uted outcome differs between two conditions, the vari-
Fig. 1. Variance of sample proportion depending on p (for
n = 1).
ances will only be identical if p1 and p2 are equally
distant from 0.5 (e.g. p1 = .4 and p2 = .6). The bigger
the difference in distance from 0.5 between the condi-
tions, the less similar the variances will be. Also, as
can be see in Fig. 1, differences close to 0.5 will matter
less than differences closer to 0 or 1. Even if p1 and p2

are unequally distant from 0.5, as long as they are close
to 0.5, the variances of the sample proportions will be
similar. Sample proportions between 0.3 and 0.7 are
considered close enough to 0.5 to assume homogeneous
variances (Agresti, 2002: 120). Within this interval,
p(1 � p) ranges from 0.21 for p = .3 or .7 to .25 for
p = .5. Unfortunately, we usually cannot determine a

priori the range of sample proportions in our experiment
(see also Dixon, this issue). Also, in general, variances in
two binomially distributed conditions will not be homo-
geneous—contrary to the assumption of ANOVA.

The inappropriateness of ANOVA for CDA was rec-
ognized as early as Cochran (1940, referred to in Agresti,
2002: 596). Before I discuss the most commonly used
method for CDA using ANOVA over transformed pro-
portions, I introduce logistic regression, which is an
alternative to ANOVA that was designed for the analy-
sis of binomially distributed categorical data.
An alternative: ordinary logit models (logistic regression)

Logistic regression, also called ordinary logit models,
was first used by Dyke and Patterson (1952), but was
most widely introduced by Cox (1958, 1970, see Agresti,
2002: Ch. 16; for early applications of logistic regression
to language research, see Sankoff & Labov, 1979). For
extensive formal introductions to logistic regression, I
refer to Agresti (2002: Ch. 5), Chatterjee et al. (2000:
Ch. 12), and Harrell (2001). For a concise formal intro-
duction written for language researchers, I recommend
Manning (2003: Ch. 5.7).

Logit models can be seen to be a specific instance of a
generalization of ANOVA. To see this link between logit
models and ANOVA, it helps to know that ANOVA can
be understood as linear regression (cf. Chatterjee et al.
(2000: Ch. 5)). Linear regression describes outcome y

as a linear combination of the independent variables
x1 . . .xn (also called predictors) plus some random error
e (and optionally an intercept b0). Eq. (6) provides two
common descriptions of linear models. The first equa-
tion describes the value of y. The second equation
describes the expected value of y. Note that categorical
predictors have to be recoded into numerical values
for (6) to make sense (treatment-coding being a common
coding in the regression literature).

y ¼ b0 þ b1x1 þ � � � þ bnxn þ e() EðyÞ
¼ b0 þ b1x1 þ � � � þ bnxn ð6Þ
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We can further abbreviate (6) using vector notation
E(y) = x0b (boldface for vectors), where x0 is a trans-
posed vector consisting of 1 for the intercept, and all
predictor values x1 . . .xn, and b is a vector of coefficients
b0 . . .bn. The coefficients b0. . .bn have to be estimated.
This is done in such a way that the resulting model fits
the data ‘optimally’. Usually, the model is considered
optimal if it is the model for which the actually observed
data are most likely to be observed (the maximum like-
lihood model; for an informal introduction, see see Baa-
yen, Davidson, & Bates, 2008).

Now imagine that we want to fit a linear regression to
proportions of a categorical outcome variable y. So, we
could define the following model of expected proportions:

EðyÞ ¼ p ¼ x0b ð7Þ

Such a linear model, also called linear probability model

(Agresti, 2002: 120; not to be confused with a probit

model), has many of the problems mentioned above
for ANOVAs over proportions. But, what if we trans-
formed proportions into a space that is not bounded
by 0 and 1 and that captures the fact that, in real bino-
mially distributed data, a change in proportions around
0.5 usually corresponds to a smaller change in the pre-
dictors than the same change in proportions close to 0
or 1 (i.e. the relation between the predictors and propor-
tions is nonlinear; cf. Agresti, 2002: 122)? Consider
odds. They are easily derived from probabilities (and
vice versa):

oddsðpÞ ¼ p
1� p

and pðoddsÞ ¼ odds

1þ odds
ð8Þ

Thus, odds increase with increasing probabilities, with
odds ranging from 0 to positive infinity and odds of 1
corresponding to a proportion of 0.5. Differences in
odds are usually described multiplicatively (i.e. in terms
of x-fold increases or decreases). For example, the odds
of being on a plane with a drunken pilot are reported to
be ‘‘1 to 117” (http://www.funny2.com/). In the nota-
tion used here, this corresponds to odds of 1/117
� 0.0086. Unfortunately, these odds are 860 times high-
er than the odds of dating a supermodel (�0.00001).
Thus, we can describe the odds of an outcome as a
product of coefficients raised to the respective predictor
values (assuming treatment-coding, predictor values are
either 0 or 1):

p
1� p

¼ b0 � bx1
1 � � � � � bxn

n ð9Þ

By simply taking the natural logarithm of odds instead
of plain odds, we can turn the model back into a linear
combination, which has many desirable properties:

ln
p

1� p
¼ lnðb0 � bx1

1 � � � � � bxn
n Þ

¼ lnðb0Þ þ lnðb1Þx1 þ � � � þ lnðbnÞxn ð10Þ
The natural logarithm of odds is called the logit (or log-
odds). The logit is centered around 0 (i.e.
logit(p) = �logit(1 � p)), corresponding to a probability
of 0.5, and ranges from negative to positive infinity. The
lnb0 . . . lnbn in (10) are constants, so we can substitute
b0 . . .bn for them (or any other arbitrary variable name).
This yields (11):

ln
p

1� p
¼ logit p ¼ b0 þ b1x1 þ � � � þ bnxn ¼ x0b ð11Þ

In other words, we can think of ordinary logit models as
linear regression in log-odds space! The logit function
defines a transformation that maps points in probability
space into points in log-odds space. In probability space,
the linear relationship that we see in logit space is gone.
This is apparent in (12), describing the same model as in
(11), but transformed into probability space:

p ¼ ex0b

1þ ex0b
¼ 1

1þ e�x0b
¼ E½y� ð12Þ

Logit models capture the fact that differences in proba-
bilities around p = .5 matter less than the same changes
close to 0 or 1. This is illustrated in Fig. 2, where the left
panel shows a hypothetical linear effect of a predictor x

in logit space (y = �3 + 0.2x), and the right panel shows
the same effect in probability space. As can be seen in the
right panel, small changes on the x-axis around p = .5
(i.e. x = 15 since 0 = �3 + 0.2 * 15 = logit(0.5)) lead to
large decreases or increases in probabilities compared
to the same change on the x-axis closer to 0 or 1.

Thus logit models, unlike ANOVA, are well-suited
for the analysis of binomially distributed categorical
outcomes (i.e. any event that occurs with the same prob-
ability at each trial). Logit models have additional
advantages over ANOVA. Logit models scale to cate-
gorical dependent variables with more than two out-
comes (in which case we call the model a multinomial

model; for an introduction, see Agresti, 2002). Among
other things, this can help avoid confounds due to data
exclusion. For example, in priming studies where
researchers are interested in speakers’ choice between
two structures, subject sometimes produce neither of
those two. If non-randomly distributed, such ‘‘errors”

can confound the analysis because what appears to be
an effect on the choice between two outcomes may, in
reality, be an effect on the chance of an error. Consider
a scenario in which, for condition X, participants pro-
duce 50% outcome 1, 45% outcome 2, and 5% errors,
but, for condition Y, they produce 50% outcome 1,
30% outcome 2, and 20% errors. If an analysis was con-
ducted after errors are excluded, we may conclude, given
small enough standard errors, that there is a main effect
of condition (in condition X, the proportion of outcome
1 would be 50/95 = 0.53; in condition Y, 50/80 = 0.63).
This conclusion would be misleading, since what really
happens is that there is an effect on the probability of

http://www.funny2.com/


Fig. 2. Example effect of predictor x on categorical outcome y. The left panel displays the effect in logit space with ln 1
1�pðyÞ ¼ �3þ 0:2x.

The right panel displays the same effect in probability space with pðyÞ ¼ 1
1þe3�0:2x.
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an error. We would find a spurious main effect on out-
come 1 vs. 2. The problem is not only limited to errors.
It also includes any case in which ‘‘other” categories are
excluded from the analysis (e.g. when speakers in a pro-
duction experiment produce structures that we are not
interested in). Multinomial models make such exclusion
unnecessary and allow us to test which of all possible
outcomes a given predictor affects. For the above exam-
ple, we could test whether the condition affects the prob-
ability of outcome 1 or outcome 2, or the probability of
an error.

Logit models also inherit a variety of advantages
from regression analyses. They provide researchers with
more information on the directionality and size of an
effect than the standard ANOVA output (this will
become apparent below). They can deal with imbalanced
data, thereby freeing researchers from all too restrictive
designs that affect the naturalness of the object of their
study (see Jaeger, 2006, for more details). Like other
types of regression, ordinary logit models also force us
to be explicit in the specification of assumed model
structure. At the same time, regression models make it
easier to add and remove additional post-hoc control
in the analysis, thereby giving researchers more flexibil-
ity and better post-hoc control. Another nice feature
that logit models inherit from regressions is that they
can include continuous predictors. Modern implementa-
tions of logit models come with a variety of tools to
investigate linearity assumptions for continuous predic-
tors (e.g. rcs for restricted cubic splines in R’s Design

library; Harrell, 2005). Ordinary logit models do, how-
ever, have a major drawback compared to ANOVA:
they do not model random subject and item effects.
Later I describe how mixed logit models overcome this
problem. First I present a case study that exemplifies
the problems of ANOVA over proportions using a real
psycholinguistic data set. The case study illustrates that
these problems persist even if arcsine-square-root trans-
formed proportions are used in the ANOVA.
A case study: Spurious significance in ANOVA over

proportions

Arnon (2006, submitted for publication) investigated
the source of children’s difficulty with object relative
clauses in production and comprehension. Arnon pre-
sents evidence that children are sensitive to the same fac-
tors that affect adult language processing. I consider
only parts of the comprehension results of Arnon’s
Study 2. In this 2 � 2 experiment, twenty-four
Hebrew-speaking children listened to Hebrew relative
clauses (RCs). RCs were either subject or object
extracted. The noun phrase in the RC (the object for
subject extracted RCs and the subject for object
extracted RCs) was either a first person pronoun or a
lexical noun phrase (NP). An example item in all four
conditions is given in Table 1 (taken from Arnon,
2006), where the manipulated NP is underlined.

Arnon hypothesized that, like adults (Warren & Gib-
son, 2002), children perform better on RCs with pro-
noun NPs than on RCs with lexical NPs, and that
they perform better on subject RCs than on object
RCs. Table 2 summarizes the mean question-answer
accuracy (i.e. the proportion of correct answers) and
standard errors across the four conditions.

Arnon (submitted for publication) used mixed logit
models to analyze her data which yielded two main
effects and no interaction. For the sake of argument, I
demonstrate that using ANOVAs would have resulted
in a spurious interaction.

Note that, contrary to the assumption of the homo-
geneity of variances, but as expected for binomially dis-
tributed outcomes, the standard errors (and hence the
variances) are bigger the closer the mean proportion of
correct answers is to 50%. The results in Table 2 also
suggest that an ANOVA will find main effects of RC
type and NP type as well as an interaction. Question-
answer accuracy is higher for subject RCs than for
object RCs (92.7% vs. 76.6%) and higher for pronoun



Table 3
Summary of the ANOVA results over untransformed data

Subject
analysis

Item
analysis

Combined

F1
(1,23)

p F2
(1,5)

p minF
(1,10)

p

RC type 24.2 <.01 10.2 <.03 7.2 <.03
NP type 16.1 <.01 19.7 <.01 8.9 <.01
Interaction 9.7 <.01 12.6 <.02 5.5 <.04

Table 1
Materials from Study 2 in Arnon (2006, Comprehension experiment)

Subject RC, Eize tzeva ha-naalaim shel ha-yalda she metzayeret et ha-axot?
Lexical NP Which color the-shoes of the-girl that draws the nurse-ACC

What color are the shoes of the girl that is drawing the nurse?

Object RC, Eize tzeva ha-naalaim shel ha-yalda she ha-axot metzayeret?
Lexical NP Which color the-shoes of the-girl that the nurse draws?

What color are the shoes of the girl that the nurse is drawing?

Subject RC, Eize tzeva ha-naalaim shel ha-axot she metzayeret oti?
Pronoun Which color the-shoes of the-nurse that draws me-ACC?

What color are the shoes of the nurse that is drawing me?

Object RC, Eize tzeva ha-naalaim shel ha-axot she ani metzayeret?
Pronoun Which color the-shoes of the-nurse that I-NOM draw?

What color are the shoes of the nurse that I am drawing?

Table 2
Percentage of correct answers and standard errors by condition

Lexical NP Pronoun NP

Subject RC 89.7% (.02) 95.7% (.02)
Object RC 68.9% (.04) 84.3% (.03)
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NPs than for lexical NPs (90.0% vs. 79.3%). Further-
more, the effect of NP type on the percentage of correct
answers seems to be bigger for object RCs (68.9% vs.
84.3%) than for subject RCs (89.7% vs. 95.7%), suggest-
ing that an ANOVA will find an interaction.

ANOVA over untransformed proportions

Indeed, subject and item ANOVAs over the average
percentages of correct answers return significance for
both main effects and the interaction.

As expected the interaction comes out as highly sig-
nificant in the ANOVA. Now, are these effects spurious
or not? In the previous section, I discussed several theo-
retical issues with ANOVAs over proportions. But do
those issues affect the validity of these ANOVA results?
As I show next, the answer is yes, they do.

Ordinary logit model

Ordinary logit models are implemented in most mod-
ern statistics program. I use the function lrm in R’s
Design library (Harrell, 2005). The model formula for
the R function lrm is given in (13).

Correct � 1þ RCtypeþ NPtype
þ RCtype :NPtype

ð13Þ

The ‘‘1” specifies that an intercept should be included in
the model (the default). Further shortening the formula,
I could have written Correct � RCtype*NPtype, which
in R implies inclusion of all combinations of the terms
connected by ‘‘*” (I will use this notation below).
For the ordinary logit model, the analyzed outcomes
are the correct or incorrect answers. Thus, all cases are
entered into the regression (instead of averaging across
subjects or items). Significance of predictors in the fitted
model is tested with likelihood ratio tests (Agresti, 2002,
12). Likelihood ratio tests compare the data likelihood
of a subset model with the data likelihood of a superset
model that contains all of the subset model’s predictors
and some more. A model’s data likelihood is a measure
of its quality or fit, describing the likelihood of the sam-
ple given the model. The �2 * logarithm of the ratio
between the likelihoods of the models is asymptotically
v2-distributed with the difference in degrees of freedoms
between the two models. Thus a predictor’s significance
in a model is tested by comparing that model against a
model without the predictor using a v2-test (Table 3).

Here I use the function anova.Design from R’s Design

library (Harrell, 2005). The function automatically com-
pares a model against all its subset models that are
derived by removing exactly one predictor. For Arnon’s
data, we find that a model without RC type has consid-
erably lower data likelihood (v2(1) = 28.8, p < .001), as
does a model without NP type (v2(1) = 12.2, p < .001).
Thus RC and NP type contribute significant informa-
tion to the model. The interaction, however, does not
(v2(1) = 0.01, p > .9). The summary of the full model
in Table 4 confirms this.



Table 4
Summary of the ordinary logit model (N = 696; model Nagelkerke r2 = 0.126)

Predictor Coefficient SE Wald Z p

Intercept 0.80 (0.167) 4.72 <.001
RC type = subject RC 1.35 (0.295) 4.58 <.001
NP type = pronoun 0.89 (0.272) 3.26 <.001
Interaction = subject RC & pronoun 0.05 (0.511) 0.10 >.9

1 Collinearity is more of a concern in unbalanced data sets,
but even in balanced data sets it can cause problems (for
example, interactions and their main effects are often collinear
even in balanced data sets). R comes with several implemented
measures of collinearity (e.g. the function kappa as a measure of
a model’s collinearity; or the function vif in the Design library,
which gives variance inflation factors—a measure of how much
of one predictor is explained by the other predictors in the
model). R also provides methods to remove collinearity from a
model: from simple centering and standardizing (see the
functions scale) to the use of residuals or principal component
analysis (PCA, see the function princomp).
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Note that the standard summary of a regression
model provides information about the size and direc-
tionality of effects (an ANOVA would require planned
contrasts for this information). The first column of
Table 4 lists all the predictors entered into the regres-
sion. The second column gives the estimate of the coef-
ficient associated with the effect. The coefficients have an
intuitive geometrical interpretation: they describe the
slope associated with an effect in log-odds (or logit)
space. For categorical predictors, the precise interpreta-
tion depends on what numerical coding is used. Treat-
ment-coding compares each level of a categorical
predictor against all other levels. This contrasts with
effect-coding, which compares two levels against each
other. Here I have used treatment-coding, because it is
the most common coding scheme in the regression liter-
ature. For example, for the current data set, subject RCs
are coded as 1 and compared against object RCs (which
are taken as the baseline and coded as 0). So, the coeffi-
cient associated with RC type tells us that the log-odds
of a correct answer for subject RCs are 1.35 log-odds
higher than for object RCs. But what does this mean?
Recall that log-odds are simply the log of odds. So,
the odds of a correct answer for subject RCs are
e1.35 � 3.9 times higher than the odds for object RCs.
Following the same logic, the odds for RCs with pro-
nouns are estimated to be e0.89 � 2.4 times higher than
the odds for RCs with lexical NPs.

The third column in Table 4 gives the estimate of the
coefficients’ standard errors. The standard errors are
used to calculate Wald’s z-score (henceforth Wald’s Z,
Wald, 1943) in the fourth column by dividing the coeffi-
cient estimate by the estimate for its standard error. The
absolute value of Wald’s Z describes how distant the
coefficient estimate is from zero in terms of its standard
error. The test returns significance if this standardized
distance from zero is large enough. Coefficients that
are significantly smaller than zero decrease the log-odds
(and hence odds) of the outcome (here: a correct
answer). Coefficients significantly larger than zero
increase the log-odds of the outcome. Unlike the likeli-
hood ratio test, however, Wald’s Z-test is not robust
in the presence of collinearity (Agresti, 2002: 12). Collin-
earity leads to inflated estimates of the standard errors
and changes coefficient estimates (although in an
unbiased way). The model presented here contains only
very limited collinearity because all predictors were
centered (VIFs < 1.5).1 This makes it possible to use
the coefficients to interpret the direction and size of
the effects in the model.

The main effects of RC type and NP type are highly
significant. We can also interpret the significant inter-
cept. It means that, if the RC type is not ‘subject RC’
and the NP type is not ‘pronoun’, the chance of a correct
answer in Arnon’s sample is significantly higher than
50%. The odds are estimated at e0.8 � 2.2, which means
that the chance of a correct answer for object RCs with a
lexical NP is estimated as p ¼ 2:2

1þ2:2
� 0:69. Indeed, this is

what we have seen in Table 2. Similarly the predicted
probability of a correct answer for subject RC with a
pronoun is calculated by adding all relevant log-odds,
0.8 + 1.35 + 0.89 = 3.04, which gives p ¼ e3:04

1þe3:04 � 0:95
(compared to 95.7% given in Table 2).

The numbers do not quite match because we did not
include the coefficient for the interaction. However,
notice that they almost match. This is the case because
the interaction does not add significant information to
the model (Wald’s Z = 0.01, p > .9). The effects are illus-
trated in Fig. 3, showing the predicted means and confi-
dence intervals for all combinations of RC and NP type
(the plot uses plot.Design from R’s Design library, Har-
rell, 2005).

In sum, there is no significant interaction because the
effect of NP type for different levels of RC type does not
differ in odds (and hence neither does it differ in log-
odds). Indeed, both the change from 68.9% to 84.3%
associated with NP type for object RCs and the change
from 89.7% to 95.7% associated with NP type for subject
RCs correspond to an approximate 2.5-fold odds
increase. So, unlike ANOVA, logistic regression returns
a result that respects the nature of the outcome variable.



Fig. 3. Estimated effects of RC type and NP type on the log-
odds of a correct answer.
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The spurious interaction in the ANOVA should be of
no further surprise given the before-mentioned concep-
tual problems. Readers familiar with transformations
for proportional data may find the argument against
ANOVA a straw man because they believe that ANO-
VAs will correctly recognize the interaction as insignifi-
cant once the data is adequately transformed. Next I
describe why this assumption is wrong for at least the
most commonly used transformation.
The arcsine-square-root transformation and its failure

There are several problems with the reliance on
transformation for ANOVA over proportional data.
Fig. 4. Slope and curvature of the logit and arcsine-square-root tran
To begin with there is also reason to doubt that transfor-
mations are applied correctly. The most popular trans-
formation, the arcsine-square-root transformation

(tðxÞ ¼ arcsinð ffiffiffixp Þ; e.g. Rao, 1960; Winer et al., 1971;
henceforth arcsine transformation) requires further mod-
ifications for small numbers of observations or propor-
tions close to 0 or 1 (e.g. Bartlett, 1937: 168; for an
overview, see Hogg & Craig, 1995). In practice these
modifications are rarely applied (Victor Ferreira, p.c.),
although sample proportions close to 0 or 1 are common
(e.g. in research on speech errors or when analyzing
comprehension accuracies). Even more worrisome is
the lack of any theoretical justification for the use of
transformed proportions (cf. Cochran, 1940: 346). Most
importantly, however, even ANOVA over transformed
proportions can lead to spurious results. I use Arnon’s
data to illustrate this point.

I focus on the subject analysis, where the insufficiency
of the arcsine transformation is most apparent. The two
main effects are correctly recognized as significant (RC
type: F1(1,23)= 28.5, p < .01; NP type: F1(1,23)=
17.3, p < .01). However, the interaction is still incor-
rectly considered significant (F1(1,23)= 8.5; p < .01).
This is the case because several children in Arnon’s
experiment performed close to ceiling (the proportions
of correct answers are 1 or close to 1). For such data,
ANOVAs over arcsine transformed data are unreliable.

One reason why the arcsine transformation is unreli-
able for such data becomes apparent once we compare
the plots of logit and arcsine transformed proportions.
Fig. 4 shows the slope (1st derivative) and curvature
(2nd derivative) of the two transformations. Both trans-
formations have a saddle point at p = .5, but for all
p – .5 the slope of the logit is always higher than the
slope of the arcsine-square-root. The absolute curvature
(the change in the slope) is also larger. In other words, as
one moves away from p = .5, a change in probability p1

to p2 corresponds to more of a change in log-odds than
to a change in arcsine transformed probabilities. This
sformation.
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means that, compared to the logit, the arcsine transfor-
mation underestimates changes in probability more the
closer they are to 0 or 1.

In other words, while the arcsine transformation
makes for proportional data more similar to logit
transformed data, for proportions close to 0 or 1, even
ANOVA over arcsine transformed data can return
spurious results. As mentioned earlier, this problem is
not limited to spurious significances. Imagine that in
Arnon’s data the effect of NP type would be identical
in proportions for subject and object RCs (e.g. imagine
Arnon’s data but with 74.9% correct answers for
object RCs with pronouns): in proportions there would
seem to be no interaction, but in logit space there
would be one (granted sufficiently small standard
errors).

At this point, one may ask whether there are any bet-
ter transformations that would allow us to continue to
use ANOVA for CDA. Several such transformations
have been proposed, the most well-known being the
empirical logit (first proposed by Haldane (1955), but
often attributed to Cox (1970)). The idea behind such
transformations is to stay as close as possible to the
actual logit transformation while avoiding its negative
and positive infinity values for proportions of 0 and 1,
respectively (for an empirical comparison of different
logit estimates, see Gart & Zweifel, 1967). Indeed,
appropriate transformations combined with appropriate
weighing of cases mostly avoid the problems of ANOVA
described above (for weighted linear regression that
deals with heterogeneous variances, see McCullagh &
Nelder, 1989). However, it is important to note that even
these transformations are still ad-hoc in nature (which
transformation works best depends on the actual sample
the researcher is investigating, Gart & Zweifel, 1967).
Transformations for categorical data were originally
developed because they provided a computationally
cheap approximation of the more adequate logistic
regression—approximations that are no longer
necessary.

This leaves one potential argument for the use of
ANOVA (with transformations) for CDA: the fact that
ordinary logit models provide no direct way to model
random subject and item effects. The lack of random
effect modeling is problematic as repeated measures on
the subject or item in our sample constitute violations
of the assumption that all observations in our data set
are independent of one another. Data from the same
subject or item is often referred to as a cluster. Analyses
that ignore clusters produce invalid standard errors and
therefore lead to unreliable results. Next I show that
mixed logit models address this problem (other methods
include separate logistic regressions for each subject/
item, see Lorch & Myers, 1990, or bootstrap sampling
with random cluster replacement, see Feng, McLerran,
& Grizzle, 1996).
Mixed logit models

Mixed logit models are a type of Generalized Linear

Mixed Model (Breslow & Clayton, 1993; Lindstrom &
Bates, 1990; for a formal introduction, see Agresti,
2002). Mixed Models with different link functions have
been developed for a variety of underlying distributions.
Mixed logit models are designed for binomially distrib-
uted outcomes.

Generalized Linear Mixed Models (Breslow &
Clayton, 1993; for an introduction, see Agresti, 2002:
Chapter 12) describe an outcome as the linear combi-
nation of fixed effects (described by x0b below) and
conditional random effects associated with e.g. subjects
and items (described by z0b). Just as x0 contains the
values of the explanatory variables for the fixed effects
(the predictors), z0 contains the values of the explana-
tory variables for the random effects (e.g. the subject
and item IDs). The random effect vector b can be
thought of as the coefficients for the random effects.
It is characterized by a multivariate normal distribu-
tion, centered around 0 and with the variance–covari-
ance matrix R (for details, see Agresti, 2002: 492). A
mixed logit model then has the form (for linear mixed
models, see Pinheiro & Bates, 2000; Baayen et al.,
2008):

logitðpÞ ¼ x
0bþ z0b; b � Nð0; r2RÞ ð14Þ

Just as for ordinary logit models, the parameters of
mixed logit models are fit to the data in such a way
that the resulting model describes the data optimally.
However, unlike for mixed linear models, there are
no known analytic solutions for the exact optimization
of mixed logit models’ data likelihood (Harding &
Hausman, 2007: 1312; Bates, 2007: 29). Instead, either
numerical simulations, such as Monte Carlo simula-
tions, or analytic optimization of approximations of
the true log likelihood, so called quasi-log-likelihoods,

are used to find the optimal parameters. For larger
data sets, Monte Carlo simulations are computation-
ally unfeasible even for models with parameters. Opti-
mization of quasi-log-likelihood is a computationally
efficient alternative (see Agresti, 2002: 523–524). R’s
lmer function (lme4 library, Bates & Sarkar, 2007)
uses Laplace approximation to maximize quasi-log-
likelihood (Bates, 2007: 29). Laplace approximation
‘‘performs extremely well, both in terms of numerical
accuracy and computational time” (Harding & Haus-
man, 2007: 1325).

A case study using mixed logit models

The model formula is specified in (15), where the term
in parentheses describes the random subject effects for the
intercept, the effects of RC and NP type, and their interac-



Table 5
Summary of the fixed effects in the mixed logit model (N = 696; log-likelihood = �256.2)

Predictor Coefficient SE Wald Z p

Intercept 0.84 (0.203) 4.17 <.001
RC type = subject RC 1.82 (0.365) 4.97 <.001
NP type = pronoun 1.05 (0.288) 3.66 <.001
Interaction = subject RC & pronoun 0.59 (0.580) 1.02 >.3

Table 6
Summary of random subject effects and correlations in the mixed logit model

Random subject effect s2 Correlation with random effect for

Intercept RC type NP type

Intercept 0.283
RC type = subject RC 0.645 0.625
NP type = pronoun 0.010 0.800 0.459
Interaction = subject RC & pronoun 0.221 0.800 0.459 1.000
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tion.2 Random effects are assumed to be normally distrib-
uted (in log-odds space) around a mean of zero. The only
parameter the model fits for the random effects is their var-
iance (see also Baayen et al., 2008; for details on the imple-
mentation, see Bates & Sarkar, 2007). The random
intercept captures potential differences in children’s base
performance. The other random effects capture potential
differences between children in terms of how they are
affected by the manipulations.

Correct � 1þ RCtype � NPtype
þ ð1þ RCtype � NPtypejchildÞ ð15Þ

The estimated fixed effects are summarized in Table 5.
The number of observations and the quasi-log-likeli-
hood of the model are given in the table’s caption. The
estimated variances of the random effects are summa-
rized in Table 6.

In sum, a mixed logit model analysis of the data from
Arnon (submitted for publication) confirms the results
from the ordinary logit model presented above. Even
after controlling for random subject effects, the interac-
tion between RC type and NP type is not significant.
Note that the total correlation between the random
interaction and effect of NP type for subjects in Table
6 suggests that the model has been overparameterized
(cf. Baayen et al., 2008)—one of the two random effects
is redundant. I get back to this shortly, when I show that
we can further simplify the model.

Additional advantages of mixed logit models

Mixed logit models combine all the advantages of
ordinary logit models with the ability to model random
2 Formula (15) is part of an R call to lmer (formula, data,
family = ‘‘binomial”), where family = ‘‘binomial” causes R to
fit a mixed logit model rather than a linear mixed model (for
further information, see help (‘‘family”) in R).
effects, but that’s not all. Mixed logit models do not
make the frequently unjustified assumption of the
homogeneity of variances. Also, the R implementation
of mixed logit models used here (lmer) actually maxi-
mizes penalized quasi-log-likelihood (Bates, 2007, 29).
Fitting a model that is optimal in terms of penalized
likelihood rather than absolute likelihoods reduces the
chance that the model will be overfitted to the sample.
Overfitting is a potential problem for any statistical
model (including ANOVA), because it makes a model
less likely to generalize to the entire population (Agresti,
2002: 524). Penalization is thus a welcome feature of
mixed logit models.

Another crucial advantage of mixed logit models over
ANOVA for CDA is their greater power. That is, mixed
logit models are more likely to detect true effects. Simula-
tions show that lmer’s quasi-likelihood optimization out-
performs ANOVA in terms of accurately estimating effect
sizes and standard errors (Dixon, this issue). The greater
power of mixed logit models may in part depend on the
method used to approximate quasi-likelihood (Dixon’s
results are based on Laplace approximation, implemented
in lmer; even better approximations are under develop-
ment, Bates & Sarkar, 2007).

Another advantage of mixed models is that they
allow us to test rather than to stipulate whether a
hypothesized random effect should be included in the
model. The question of whether or to what extent ran-
dom subject and items effects (especially the latter) are
actually necessary has been the target of an ongoing
debate (Clark, 1973; Raaijmakers, Schrijnemakers, &
Gremmen, 1999, a). As Baayen et al., 2008 demonstrate,
mixed models can be used to test a hypothesized random
effect. The test follows the same logic that was used
above to test fixed effects: we simply compare the likeli-
hood of the model with and the model without the ran-
dom effect. Before I illustrate this for the mixed logit
model from Tables 5 and 6, a word of caution is in



Table 7
Summary of the fixed effects in the mixed logit model (N = 696; log-likelihood = �256.8)

Predictor Coefficient SE Wald Z p

Intercept 0.86 (0.212) 3.99 <.001
RC type = subject RC 1.90 (0.380) 5.01 <.001
NP type = pronoun 0.96 (0.278) 3.44 <.001
Interaction = subject RC & pronoun 0.10 (0.544) 0.18 >.8

Table 8
Summary of random subject effects and correlations in the
mixed logit model

Random subject effect s2 Correlation with random
effect for Intercept

Intercept 0.399
RC type = subject RC 0.744 0.629

Table 10
Summary of random subject and item effects and correlations in
the mixed logit model

Random effect s2 Correlation with
random effect
for Intercept

Subject intercept 0.420
Subject RC type = subject RC 0.770 0.620
Item intercept 0.086
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order. Comparisons of models via quasi-log-likelihood
can be problematic, since quasi-likelihood are approxi-
mations (see above). This problem is likely to become
less of an issue as the employed approximations become
better (for discussion, see Bates & Sarkar, 2007). In any
case, we can use quasi-log-likelihood comparisons
between models to get an idea of how much evidence
there is for a hypothesized random effect.

As mentioned above, the correlation between the
random subject effects in Table 6 shows that some of
the random effects are redundant. Indeed, model com-
parisons suggest that neither the random effect for the
interaction nor the random effect for NP type is justified.
The quasi-log-likelihood decreases only minimally (from
�256.8 to �258.5) when these two random effects are
removed. A revised mixed logit model without random
effects for NP type and the interaction is specified in
(16). Tables 7 and 8 give the updated results.

Correct � 1þ RCtype � NPtype
þ ð1þ RCtypejchildÞ ð16Þ

Note that most fixed effect coefficients have not changed
much – neither compared to the full mixed logit model
in (15), nor compared to the ordinary logit model in
(13). In all models the main effects are significant but
the interaction is not. Only the coefficient of RC type
differs between the current mixed logit model and the or-
dinary logit model: it is quite a bit larger in the current
model, but note that the standard error has also gone
Table 9
Summary of the fixed effects in the mixed logit model (N = 696; log-l

Predictor Coefficient

Intercept 0.85
RC type = subject RC 1.97
NP type = pronoun 0.99
Interaction = subject RC & pronoun 0.07
up. Wald’s Z for RC type does not differ much between
the two models. In summary, if there are random subject
effects associated with NP type or the interaction of RC
and NP type (e.g. if children in the sample differ in terms
of how they react to NP type), they would seem to be
subtle.

Finally, mixed logit models inherit yet another
advantage from the fact that they are a type of general-
ized linear mixed model. They allow us to conduct one

combined analysis for many independent random effects.
For example, we could include random intercepts for
both subjects and items in the model:

Correct � 1þ RCtype � NPtype
þ ð1þ RCtypejchildÞ þ ð1jitemÞ

ð17Þ

If a fixed effect is significant in such a model, this means it
is significant after the variance associated with subject and
items is simultaneously controlled for. In other words,
mixed logit models can combine F1 and F2 analysis (for
more detail and examples for linear mixed models, see
Pinheiro & Bates, 2000; Baayen et al., 2008). Here only
a random intercept (rather than random slopes for RC
type, etc.) is included for items, because all further ran-
dom effects are highly correlated with the random inter-
cept (rs > 0.8) and hence unnecessary. The resulting
model is summarized in Tables 9 and 10. The minimal
ikelihood = �256.0)

SE Wald Z p

(0.244) 3.49 <.001
(0.385) 5.11 <.001
(0.283) 3.49 <.001
(0.550) 0.13 >.8
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change in the quasi-log-likelihood, and the small esti-
mates for the item variance, suggest that item differences
do not account for much of the variance. Note that despite
the fact that two items had missing cells and had to be ex-
cluded from the ANOVA, the current model uses all 8
items and 24 subjects in Arnon’s data.

Combining subject and item analyses into one unified
model is efficient and conceptually desirable (cf. Clark,
1973). Note that, in principle, mixed models are even
compatible with random effects beyond subject and item
effects (e.g. if the children spoke different dialects and we
hypothesized that this matters, we could include a ran-
dom effect for dialect).
Conclusions

I have summarized arguments against the use of
ANOVA over proportions of categorical outcomes.
Such an analysis—regardless of whether the propor-
tional data are arcsine-square-root transformed—can
lead to spurious results. With the advent of mixed logit
models, the last remaining valid excuse for ANOVA
over categorical data (the inability of ordinary logit
models to model random effects) no longer applies.
Mixed logit models combine the strengths of logistic
regression with random effects, while inheriting a variety
of advantages from regression models. Most crucially,
mixed models avoid spurious effects and have more
power (Dixon, this issue). Finally, they form part of
the generalized linear mixed model framework that pro-
vides a common language for analysis of many different
types of outcomes.
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