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Generalizing Across Stimuli as Well as Subjects:
A Neglected Aspect of External Validity

Gail A. Fontenelle, Amanda Peek Phillips, and David M. Lane
Rice University

In order to generalize the results of an experiment beyond the specific stimuli
employed, it is necessary to consider variance due to stimulus sampling. This can
be accomplished by treating stimuli as a random effect rather than the traditional
procedure of treating stimuli as a fixed effect. The serious consequences of the
traditional approach are illustrated using examples from applied psychology.
Statistical and design considerations for generalizing the results of experiments
are discussed.

In the design of psychological research, it
is of utmost importance to be able to separate
the effects of experimental manipulations
from the effects of extraneous variables. It is
inevitably the case that subjects possess attri-
butes that are unmeasured, uncontrolled, and
have unpredictable effects. However, it is well
known that randomization allows the re-
searcher to estimate the magnitude of the
effects of these extraneous variables and,
through the use of standard techniques of
statistical inference, to determine the proba-
bility that differences between conditions as
large as (or larger than) those obtained would
occur if these extraneous variables were op-
erating alone.

Just as in the case of subjects, it is likely
that unmeasured and uncontrolled attributes
of stimuli affect the experimental outcome in
unpredictable ways. The potential for this
problem exists in many areas of applied
psychology where extraneous aspects of stim-
uli are difficult to assess. For example, con-
sider a hypothetical study of sex discrimina-
tion in which four males and four females
play the role of an applicant interviewing for
a managerial position. Although applicants
read the same script, there are (unavoidably)
differences in poise, physical attractiveness,
and presentation style. If the male applicants
were rated as being significantly more quali-
fied than the female applicants, would the
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conclusion that the difference was due to sex
bias be warranted? Not necessarily. It is pos-
sible that, by chance, the four male applicants
possessed extraneous attributes, irrespective
of sex, that accounted for their higher ratings;
thus, it would be a fallacy to generalize these
results to the entire population of males and
females.

Although the problem of generalizing from
a stimulus sample to a stimulus population
has been discussed in other contexts (Clark,
1973, 1976; Cohen, 1976; Coleman, 1964;
Keppel, 1976; Smith, 1976; Wike & Church,
1976), it has been essentially ignored in in-
dustrial/organizational psychology and other
applied fields. The purposes of this article,
therefore, are to call attention to the problem
of generalizing across stimuli and to discuss
some possible courses of action that can be
taken.

It is frequently the case that an experi-
menter has no choice other than to nest
stimuli within treatment conditions. This is
particularly true in studies of sex and race
bias, for in these studies it is generally not
possible for a person to be in both the male
ratee and female ratee conditions (for exam-
ple). As an example of this kind of research,
consider a study by Bigoness (1976) in which
the effects of ratee sex, ratee race, and level
of performance on the evaluation of ratee's
suitability for a job were examined. These
variables were manipulated in a 2 X 2 X 2
factorial design in which a total of eight
ratees (one representing each of the eight
cells in the design) and 60 subjects were
employed. Although low-performing males
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and low-performing females were rated nearly
identically, high-performing females were
rated higher than high-performing males. De-
spite the finding that this effect was highly
significant in a standard analysis of variance
(ANOVA), the conclusion that high-performing
females are rated higher than high-performing
males is not justified. As will be shown
subsequently, not only does a significance test
provide little protection against making a
Type I error, but the probability of making a
Type I error approaches 1.0 as the number
of subjects employed in the design increases.
Moreover, the problem is very serious even
with small sample sizes.

For purposes of explication, assume that
the population treatment effect in Bigoness'
experiment was actually zero. That is, if all
the ratees in the ratee population were rated
by all the raters in the rater population, then
there would be no difference between the
mean rating of high-performing males and
the mean rating of high-performing females.
How, other than by a fluke, might Bigoness
have found a significant effect under these
conditions? It is not implausible that some
characteristics or attributes of the two partic-
ular high-performing female ratees other than
their sex may have caused raters to inflate
the female performance ratings. That is, it
may have been simply that the high-perform-
ing females were, by chance, inherently better
(with respect to these irrelevant features) than
were the high-performing males. The signifi-
cance test properly rejects only the null hy-
pothesis that there is no difference between
the specific ratees used in the experiment. It
says little about the population of ratees.

Are studies that use many subjects less
vulnerable to this problem than studies that
use few subjects? Interestingly, using more
subjects (raters in this case) only increases
the probability of incorrectly rejecting the
null hypothesis. In situations of this sort, the
mean value of the irrelevant attributes for
one set of stimuli is bound to be different
from the mean value of the irrelevant attri-
butes for the other set. If enough subjects are
employed, these random (but very real) dif-
ferences due to stimulus sampling are virtually
certain to lead to a rejection of the null
hypothesis.

The problem is serious even for experi-
ments with small sample sizes. For example,
Forster and Dickinson (1976) performed a
Monte Carlo simulation to estimate Type I
error rates and found that the Type I error
rates were grossly overestimated: with ten
raters, five ratees, and a nominal Type I error
of .05, the actual error rate was .24. When
the number of raters was increased to 20, the
actual error rate rose to .31.

Would increasing the number of ratees
lessen the problem? With more ratees, the
"true" mean of the sample stimuli (the mean
rating of the sample stimuli if rated by all
raters in the population) would be closer to
the population mean (the mean rating of all
stimuli if rated by all raters in the population).
But it is not clear how many ratees is enough.
Even studies that go to great lengths to use
many stimuli are not immune from this
problem. For example, Schmitt and Lappin
(1980) found, among other things, an effect
of ratee's race on judged performance. Al-
though these investigators used 60 ratees, far
more than is typical, they were still not
justified in assuming that all irrelevant ratee
attributes were completely equated. Some
differences, although probably only small
ones, undoubtedly remained. Because there
is no way of knowing how much these differ-
ences biased the statistical analysis, these
results are not as conclusive as they might
have been.

How, then, is an experimenter to control
for these irrelevant attributes? One solution
is essentially the same as that used to control
for differences between conditions resulting
from the random assignment of subjects: The
variance between conditions is assessed rela-
tive to the variation within conditions. Exactly
how this is done is shown in the example
given below.

In the hypothetical study of sex discrimi-
nation discussed previously, four females and
four males each played the role of an applicant
interviewing for a managerial position. Male
and female stimulus persons read the same
script of an applicant being interviewed and
were each rated by 20 male subjects on their
qualifications for the position. Table 1 presents
ratings of all applicants as a function of
subjects (raters) and sex of ratee.
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Table 1
Qualifications Ratings of Male
and Female Applicants

Applicants

Males

Subject

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1

8
9
7
8
9
9
7
8
7
9
8
9
8
7
8
9
7
8
9
9

2

6
7
7
5
7
8
7
6
5
6
7
7
6
7
6
7
5
6
7
6

3

5
7
6
5
6
7
5
5
4
6
6
6
5
6
5
7
5
5
6
6

4

4
5
3
4
5
6
5
5
4
4
5
4
4
3
4
5
4
4
4
5

5

7
8
7
6
7
8
7
6
6
7
7
7
6
7
7
8
7
6
8
7

Females

6

5
6
5
4
5
6
5
5
4
4
6
5
4
5
5
6
5
4
5
5

7

4
4
3
3
3
4
3
4
3
4
5
3
3
3
4
4
2
3
3
4

8

3
4
2
2
3
3
2
2
1
2
5
2
3
2
3
4
1
1
2
3

The typical way of testing for sex bias
would be to compute the mean rating each
subject gave male and female ratees and
conduct a Subjects (20) X Ratee Sex (2) AN-
OVA. For the hypothetical data shown in
Table 1, this method of analysis results in a
highly significant effect of ratee sex, F(l,
38) = 67.83, p < .0001. From this point on,
this type of F ratio will be called Fl.

The problem with this approach can be
seen by examining the expected mean squares
associated with the design. As shown in Table
2, the expected mean square of ratee sex

differs from the expected mean square of the
Ratee Sex X Subjects interaction by two
terms: ra^ and qra2

A, the former representing
the effect of ratee and the latter representing
the effect of ratee sex. Thus, if the mean
square for ratee sex is significantly larger than
the mean square for the Ratee Sex X Subjects
interaction, as it is in this case, any of three
possible states of nature are possible:

1. <r^ > 0 and = 0,

2. tr^ = 0 and ai > 0,

3. OA > 0 and OR > 0,

where 0% is the variance due to ratee sex and
(TR is the variance due to ratees. Clearly, the
important possibility (Number 2, above) that
there was no real effect of ratee sex cannot
be ruled out by a significant F\ .

What then might be properly concluded
from this analysis? Statistically speaking, the
subjects factor is treated as a random effect
and the ratees factor is treated as a fixed
effect. As such, the significant F allows the
generalization of the ratee sex effect to the
population of subjects but not to the popu-
lation of ratees. An effect is usually not of
much value if it is specific to the sample of
stimuli employed because the goal of most
research is to generalize results beyond both
the sample of subjects and the sample of
stimuli.

In order to generalize the results to the
population of ratees, a second F ratio can be
constructed. A mean rating across subjects is
computed for each ratee, and an ANOVA is
conducted on these means. For the present
example, this results in a simple one factor
design (ratee sex) with four ratees per condi-

Table 2
Sources of Variance and Expected Mean Squares; Within-Subjects Three-Factor Design
With One Fixed Effect and Two Random Effects

Label

A
RwA
S
A X S
S X RwA

Sources of variance

Ratee sex (p)
Ratees (q) within ratee sex
Subjects (r)
Ratee Sex X Subjects
Subjects X Ratees Within Ratee Sex

df

P- 1
P(Q- 1)
r- 1
(P - IX' - 1)
p(P- l)(r- 1)

Expected value of mean square

<% + ORS + qrts +
ffj + «is + rait
<Te + °RS + PQ"S

<fe + "its + Q<>AS
<t + <&S

ra^ + qra*.
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tion. For the hypothetical data, this analysis
results in an F(l, 6)= 1.79, which is not
significant, p = .23. An F ratio from this
type of analysis will be referred to as F2.

In this analysis, the subjects factor is treated
as a fixed effect and the ratees factor is treated
as a random effect. As such, the failure to
find a significant F2 means that there is no
statistical basis on which to generalize the
effect of ratee sex to the population of ratees.
In order to conclude that there is a true effect
of ratee sex (or, that OA > 0) then F2 as well
as Fl should be significant. If only F2 is
significant, then it cannot be safely inferred
that ratee sex has a real effect. Examination
of Table 2 shows that a significant F2 allows
three possibilities:

1. ffi>0 and <ris = 0,

2. SA = 0 and OAS > 0,

3. a*A > 0 and <^s > 0,

where a* is the variance due to ratee sex and
OAS is the variance due to the Ratee Sex X
Subjects interaction. Because the variance
due to ratee sex is zero in Possibility 2, a
significant F2 by itself does not allow the
conclusion that there is sex bias.

In summary, a significant Fl indicates that
the results generalize to the population of
raters for the sample of ratees, whereas a
significant F2 indicates that the results gen-
eralize to the population of ratees for the
sample of subjects. If both Fl and F2 are
significant, one can be reasonably confident
that the effect is not due to sampling error.
However, if one wishes to make a valid sta-
tistical generalization to the population of
ratees as judged by the population of subjects,
both subjects and ratees should be treated as
random effects simultaneously. The most
common method of doing this employs Quasi-
F ratios.

As can be seen in Equation 1, the Quasi-
F ratio, F', is computed from four mean
squares.

F' = (MSA

+ MSSxRwA)l(MSAS + MSRwA) (1)

Algebraic manipulation of the mean squares
from Table 2 demonstrates that the numerator

of Equation 1 exceeds the denominator by
only the desired term, qra^, which is propor-
tional to the variance due to ratee sex. Thus,
if there is no effect of ratee sex, the expected
value of the numerator equals the expected
value of the denominator. Although the vari-
ance ratio is not exactly distributed as F, it
is well approximated by the F distribution
(Clark, 1973; 1976; Santa, Miller, & Shaw,
1979).

To return to the example, when the Quasi-
F ratio is computed and its significance tested,
the effect of ratee sex is not significant, F'(l,
6) = 1.74, p = .25. The method for calculating
degrees of freedom for the Quasi-F test is
somewhat cumbersome and is shown in the
Appendix.

It is not the case that the problem of
generalizing across stimuli is only serious
when stimuli are nested within treatments.
For example, consider the study by Imada
and Hakel (1977) in which raters assessed a
ratee's qualifications after observing an em-
ployment interview. The same female ratee
was used in two conditions differing in the
degree of interpersonal distance maintained.
Because it is not unreasonable to suppose
that some ratees are rated higher if they
maintain little interpersonal distance, whereas
other ratees are rated higher if they maintain
a lot of interpersonal distance, the results
could depend primarily on the particular
ratee who, by chance, happened to be selected
for the study. Therefore, the results from the
ANOVA on this ratee could not be generalized
validly beyond this specific ratee. If several
ratees had been used, it would have been
possible to compute a Quasi F and generalize
to both the population of raters and the
population of ratees.

It is important to note that the Quasi F
has little power unless a relatively large num-
ber of stimuli is employed. Because it is
generally the case that the power of the
Quasi-F test will be slightly lower than the
power of the less powerful of Fl and F2,
both Fl and F2 must have adequate power
in order for the Quasi F to have adequate
power. Because there are usually fewer ratees
than raters, power is typically controlled by
F2, not Fl. Although the power of the Quasi-
F test is difficult to compute, a practical
solution for the researcher is to compute the



GENERALIZING ACROSS STIMULI 105

power of Fl and F2. If both are adequate,
the power of the F will probably be adequate.
In general, the same considerations and/or
rules of thumb used to determine the number
of raters (or subjects) should also be used
when determining the number of ratees.

Treatment of stimuli as a random effect in
the statistical model has met with some con-
troversy. One viewpoint holds that because
stimuli are rarely sampled randonjly from
some specified population, the treatment of
stimuli as a random effect is inappropriate
(Wike & Church, 1976). Although this is
certainly a legitimate concern, we do not feel
that the resulting problems are serious enough
to preclude the use of the random effects
model. First, it is possible for a researcher to
sample stimuli in a manner that approximates
random sampling to a reasonable degree.
This is particularly true in applied psychology.
For example, in the study of performance
appraisal there is no reason that the sampling
of ratees (stimuli) cannot be just as random
as the sampling of raters (subjects). Because
(a) neither subjects nor stimuli are typically
sampled randomly from a specifiable popu-
lation, and (b) it is generally accepted that
the sampling of subjects is close enough to
random to justify the use of statistical models
that assume random sampling, it seems un-
reasonable to accept one approximation and
reject the other. Second, it is important to
weigh the cost of not satisfying the random-
sampling assumption completely against the
cost of ignoring the stimulus-sampling prob-
lem altogether. We believe the latter cost to
be far greater, because it entails the acceptance
of a seriously inflated Type I error rate.

Another argument against the treatment
of stimuli as a random effect reflects uncer-
tainty about the use of the Quasi-F test
(Cohen, 1976; Wike & Church, 1976). First,
the Quasi-F test is only approximate: Al-
though the numerator and the denominator
have the same expected value when the null
hypothesis is true, the ratio is not distributed
exactly as F (Winer, 1971). Second, the sta-
tistical properties of the Quasi F have not yet
been fully investigated. Specifically, Wike and
Church (1976) have questioned the robustness
of the Quasi F in the face of violations of its
assumptions. However, preliminary evidence
has indicated the Quasi F is quite robust

(Forster & Dickinson, 1976; Santa et al.,
1979).

It is important to note that Quasi F is not
the only approach to analyzing mixed designs
with more than one random effect. For ex-
ample, tests based on the maximum likelihood
approach have been developed, and a com-
puter program for calculating them is avail-
able (Dixon & Brown, 1979). However, the
statistical properties of these tests have re-
ceived less attention and are thus less well
known than those of the Quasi F.

Although this discussion has focused on
controlling for extraneous variance statisti-
cally, it is important to recognize that the
problem can sometimes be avoided in the
design of the experiment. For example, if it
were possible to pair each subject with a
unique stimulus, extraneous variance due to
subjects and extraneous variance due to stim-
uli would be combined in each data point.
Variance due to stimuli would be totally
confounded with variance due to subjects
and, therefore, the error term in the typically-
done analysis of variance would, properly,
include variance due to stimuli, variance due
to subjects, and variance due to the Subjects X
Stimuli interaction. Maudlin and Laughery
(1981) provide one example of an experimen-
tal design that used this type of solution. In
a study of facial recognition, these authors
examined the effects of constructing an Identi-
kit composite of a target face on subsequent
facial recognition. Because each subject
viewed a different target face, this experimen-
tal design allowed the researchers to generalize
to the population of all subjects as well as
the population of all stimuli.

It should be noted that generalization can
sometimes be based on logical rather than
statistical considerations (Keppel, 1982).
Logical generalization requires the represen-
tative selection of a subset of a stimulus
population. As Wike and Church (1976) note,
representative selection may often be the
preferred method of stimulus selection be-
cause it is more economical. However, when
representative selection is used, the general-
ization of results is based on a researcher's
judgment and therefore is always somewhat
subjective. As a result, one is generally on
firmer ground with statistical generalization.

In addition to logical generalization, results
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can sometimes be generalized if certain as-
sumptions are made. For example, although
the statistical model for regression analysis
treats the predictor variables as fixed, the
results can be validly generalized to values of
the predictor variables not included in the
study if linearity is assumed. As Cramer and
Appelbaum (1978) point out, the only reason
that more than two values of the predictor
variable(s) are needed is so that the assump-
tion of linearity can be tested.

In an effort to determine the extent to
which this stimulus-generalization problem
exists in the applied psychological literature,
a review of the Journal of Applied Psychology
was conducted; the review covered articles
published from January 1977 through May
1983. Only one study was found (Harris,
1977) in which both subjects and stimuli
were treated appropriately as random factors
in the analyses. On the other hand, 40 studies
were found in which the results were incau-
tiously generalized beyond the sample of
stimuli employed.1 Thirty-four of these did
not provide a valid basis to generalize beyond
the sample of stimuli due to the way in which
they were designed. For the most part, these
studies employed too few stimuli to allow
statistical generalization. Six studies employed
an adequate number of stimuli but failed to
compute the appropriate statistics.

The problem of generalizing to the popu-
lation of stimuli applies to many paradigms
other than the performance rating paradigm
discussed in previous examples. For example,
in an investigation of the accuracy of eyewit-
ness testimony, Clifford and Hollin (1981)
found that the testimony of witnesses to a
violent incident was significantly less accurate
than the testimony of witnesses to a nonvi-
olent incident. Each subject viewed a video-
tape of one of six incidents, three violent and
three nonviolent. In order to generalize be-
yond the six incidents employed in the ex-
periment, the Quasi-F ratio should have been
employed. Although it could be argued that
the Quasi-F test is not practical with so few
stimuli, this does not excuse inappropriate
generalization beyond the sample. If the effect
does not vary (to a nontrivial degree) as a
function of the stimuli, then the error term
for F2 would be very small and the Quasi F
would have reasonable power even with only

six stimuli. If the effect does vary (to a
nontrivial degree) as a function of the stimuli
employed, then it is clear that too few stimuli
were used to allow generalization by statistical
or other means. Thus, there is a problem
with the conclusions of the study, although it
is an open question as to whether the problem
is in the design or in the analysis. We cate-
gorized it, somewhat arbitrarily, as a problem
in design.

In conclusion, generalizing research find-
ings is a major aim of all experimentation.
Although experimenters as a rule are very
careful to make sure that their results gener-
alize to the population of subjects, the prob-
lem of generalizing to the population of stim-
uli had been neglected. Within applied psy-
chology this problem has been addressed only
in the context of theories of measurement
(Cronbach, Gleser, Nanda, & Rajaratnam,
1971) and not in the context of hypothesis
testing. When it is the intention of an exper-
imenter to generalize results beyond the par-
ticular sample of stimuli employed, the sta-
tistical treatment of stimuli as a fixed effect
is generally inappropriate. If stimulus effects
are treated inappropriately as fixed effects,
the Type I error rate is severely inflated.
Thus, unless a researcher is willing to limit
the generalizability of his or her findings
severely, the effect of stimulus sampling must
be considered both in the design of the
experiment and in the analysis of the results.

1 A list of these studies is available from the third
author upon request.
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Appendix

Calculation of Degrees of Freedom for the Quasi-F Test

Assume F'(iJ) = (MST + MSsxMr)/(MSTxS +
MSMT) where MST = mean square for the treat-
ment effect (T); MSMT = mean square for the
effect of stimuli (M) within treatment condition;
MSSXMT = mean square for the interaction of sub-
jects within treatment condition, and MSTxs =
mean square for the treatment by subjects inter-
action.

The two mean squares in the numerator of F'
will be referred to as MSt and MSz. The two
mean squares in the denominator will be referred

to as MS3 and MS*. Let n\, n2, n}, «« be the
respective degrees of freedom for the four mean
squares.

( and j are then computed as follows:

i = (MS, + MS2f/(MSii/nl + MS2
2/n2),

j = (MS3
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