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Abstract 

Language processing in adults is facilitated by an expert ability to generate detailed 

predictions about upcoming words. This may seem like an acquired skill, but some models of 

language acquisition assume that the ability to predict is a pre-requisite for learning. This 

raises a question: Do children learn to predict, or do they predict to learn? We tested whether 

children, like adults, can generate expectations about not just the meanings of upcoming 

words but, also, their sounds, which would be critical for using prediction to learn about 

language. In two looking-while-listening experiments, we show that two-year-olds can 

generate expectations about meaning based on a determiner (Can you see one…ball/two…ice-

creams?), but that even children as old as five do not show an adult-like ability to predict the 

phonology of upcoming words based on a determiner (Can you see a…ball/an…ice-cream?). 

Our results therefore suggest that the ability to generate detailed predictions is a late-acquired 

skill. We argue that prediction may not be the key mechanism driving children’s learning, but 

that the ability to generate accurate semantic predictions may nevertheless have facilitative 

effects of language development.  
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The development of linguistic prediction: 

Predictions of sound and meaning in 2-to-5 year olds. 

Introduction 

A growing body of evidence suggests that we can rapidly make sense of the world 

thanks to prediction (Bar, 2007; Friston, 2005; Pickering & Garrod, 2013). For example, we 

can process sentences faster when the grammar, meaning, and sounds of upcoming words are 

predictable (Huettig, 2015). But prediction may do more than facilitate our ability to process 

the world: It may also drive learning (Dell & Chang, 2014; Elman, 1990; Rabagliati, Gambi, 

& Pickering, 2016). Children might learn about language, for example, by comparing their 

naïve expectations about upcoming words to the input, and updating their linguistic 

knowledge when those expectations are incorrect (i.e., in order to minimize the resulting 

prediction error signal). Prediction, therefore, could serve to unify processing and learning. 

According to one of the most influential formulations of these ideas – predictive 

coding (Friston, 2005; 2010) – the mind is constantly engaged in an attempt “to match 

incoming sensory inputs with top-down expectations or predictions” (Clark, 2013; p.1). 

Detailed sensory expectations are key to this process of prediction error minimization, and 

hence to learning, because they allow abstract predictions to be “grounded” in a format 

suitable for comparison with sensory input. But while there is good evidence that detailed 

predictions are part of the way adults process language, it is unknown whether children 

generate them, and from what age. The aim of this paper is to fill this gap: We test whether 

children can generate predictions that are sufficiently detailed at the level of sounds that they 

give rise to informative error signals that may drive learning. This of course does not amount 

to testing whether such predictions do in fact drive learning in children, as expected under 
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learning-via-prediction models, but we focus on testing an important precondition or 

assumption of such models – namely, that children can generate detailed sound predictions. 

Detailed expectations about the forms of upcoming words – i.e., more detailed than 

just their semantic meaning or syntactic category – can play a number of fundamental roles in 

learning. For example, they could help children learn about relations between linguistic 

structure and linguistic form, including learning about irregularities. It has frequently been 

suggested that children might unlearn overregularizations (e.g., the plural of mouse is mice 

not mouses) by predicting to hear one form (/maʊzɪz/) and, when they hear another form 

(/maɪs/), updating their internal representations (a suggestion known as implicit negative 

evidence; e.g., Ramscar, Dye, & McCauley, 2013; MacWhinney, 2004). This example also 

helps illustrate how children may generate detailed predictions even as their knowledge is 

still incomplete (e.g., they know how to form regular plurals but not irregular plurals). Being 

able to specifically predict particular words and wordforms could also be crucial for 

distributional learning; for example, a child who knows that the robber is more predictable 

than the policeman after He will arrest has learned something about the meaning and syntax 

of the verb arrest from its distributional properties (Gambi, Pickering, & Rabagliati, 2016; 

Elman, 1990). In this example, the child may leverage their emerging world knowledge (i.e., 

about the typical participants of arresting events) to generate detailed lexical predictions that 

help them learn about thematic and syntactic structure.  

But while it is clear how low-level expectations about sound could drive language 

learning, there are reasons to believe that such detailed expectations may be too complex for 

young children to use. For instance, in order to be able to predict /maʊzɪz/, a child would not 

only need to possess a robust knowledge of the sound system, lexicon, and grammar of their 

native language, but would also need to be able to quickly pass information between these 

different levels of representation in a top-down fashion. This second point is particularly 
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important, because a number of studies suggest that top-down processing may be slower or 

more limited in young children (e.g., Snedeker & Trueswell, 2004; Snedeker & Yuan, 2008), 

which would cause difficulty generating detailed predictions. This, in fact, would be 

compatible with children’s late unlearning of overregularizations (Marcus, 1995), and 

suggests that children may learn to predict, rather than predict to learn. 

While children’s ability to generate detailed predictions is unclear, there is good 

evidence that adults not only predict the meanings of upcoming words (e.g., Altmann & 

Kamide, 1999), but also their forms, including acoustic and orthographic properties (Dikker, 

Rabagliati, Farmer, & Pylkkänen, 2010; Herrmann, Maess, Hasting, & Friederici, 2009; 

Dikker & Pylkkänen, 2013; Farmer, Brown, & Tanenhaus, 2013; see also DeLong, Urbach, 

& Kutas, 2005, though see below). In an MEG study of reading, Dikker et al. (2010) had 

participants read contexts that predicted a syntactic category (e.g., noun as in The tasteful… 

or verb participle as in The tastefully…), followed by a target noun with visual characteristics 

that were typical of the orthography of nouns (e.g., soda) or neutral between nouns and verbs 

(e.g., infant). An enhanced sensory mismatch response occurred in visual cortex after only 

100-130ms when the target’s characteristics mismatched the expected syntactic category, but 

not when the target was neutral. Such findings suggest that adults use high-level context (e.g., 

the syntactic environment of a word) to derive detailed expectations about lower-level 

properties (see Pickering & Garrod, 2013, p. 343).  

Adults’ predictions are therefore detailed enough to support predictive learning (see 

also Gagnepin, Henson, & Davis, 2012). But what about young, language-learning children? 

Recent eye-tracking studies show that children do make linguistic predictions, but these 

studies do not specify exactly what children predict. For example, when two-year-olds hear a 

semantically-constraining verb (e.g., eat), they gaze towards semantically predictable pictures 

(e.g., of a cake, Mani & Huettig, 2012; Borovsky, Elman, & Fernald, 2012; see also Gambi et 
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al., 2016; Lukyanenko & Fisher, 2016). Thus, children use context to predict the message the 

speaker is conveying. But it is unclear if their predictive gaze is driven solely by predictions 

about meaning (something edible) or also by more detailed predictions about particular words 

(cake) and their component sounds.  

Some evidence concerning the specificity of children’s linguistic predictions comes 

from mismatch responses in ERP paradigms. For instance, Snedeker (2013) suggested that 

the mismatch response elicited when three-year-olds hear syntactic category violations (e.g., 

*Elle la fraise, “she it strawberry” vs. Elle veut manger la fraise, “she wants to eat the 

strawberry”; Bernal, Dehaene‐Lambertz, Millotte, & Christophe, 2010; see also Oberecker, 

Friedrich, & Friederici, 2005) may indicate a mismatch with low-level predictions, following 

Dikker et al. (2010). However, that conclusion is somewhat inconsistent with the late timing 

of the response (typically starting around 450ms after the onset of the violation), which 

instead suggests it could reflect integration difficulties. Under the latter interpretation, 

children may find it more difficult to process infrequent or ungrammatical word sequences, 

rather than actively generating expectations about upcoming word categories and their form 

features. 

Somewhat stronger evidence that detailed low-level predictions are generated from 

early in life comes from the finding that infants as young as 3 months produce a MisMatch 

Negativity (MMN) response to auditory oddball stimuli (e.g., the last sound in the sequence 

/a/-/a/-/a/-/a/-/i/; Dehaene-Lambertz & Dehaene, 1994; Friederici, Friedrich, & Weber, 2002). 

However, in most of these studies, expectations about form are generated via low-level 

repetitions, and not via higher-level (e.g., syntactic) knowledge. An exception to this is the 

finding that infants generate a mismatch response to stimuli that are identical (/a/-/a/-/a/-/a/-

/a/) when they are first familiarized to non-identical stimuli (/a/-/a/-/a/-/a/-/i/), which suggests 

that infants use global statistics to predict sounds (Basirat, Dehaene, & Dehaene-Lambertz, 
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2014). However, this mismatch response occurred later (900ms) than the standard infant 

MMN (typically observed between 270-370ms), and thus it may reflect higher-level 

processing, rather than sensory processing. 

Finally, Ylinen, Bosseler, Junttila, and Huotilainen (2016) argued that infants’ 

processing of words versus non-words provides evidence for prediction errors. They showed 

that Finnish 12- and 24-month-olds produced different ERP responses to two equally 

infrequent oddballs, the disyllables /kuk:a/ and /kuk:e/, with the former eliciting an early 

negativity response. /kuk:a/ is a familiar word (meaning rooster), but /kuk:e/ is a nonword, 

and Ylinen et al. argued that the distinct responses could only be explained if infants had used 

the first syllable to predict the second syllable, resulting in different processing depending on 

whether the continuation was a possible word. But this claim is hard to evaluate, partly 

because of one unexpected result – the oddball unfamiliar words generated an unusual 

mismatch positivity – and partly because these data could also be explained non-predictively, 

with infants processing familiar versus unfamiliar multi-syllable words in different ways.  

While all of these studies have used mismatch responses to infer that children 

generate detailed form predictions, such evidence is at best quite indirect, and leaves these 

studies open to alternative “integration cost” explanations: Rather than actively generating 

expectations about sounds, children may find it more difficult to process infrequent sounds. A 

direct test of children’s ability to predict sounds is therefore needed. If children can indeed 

predict sounds from early on, then it would mean that one fundamental assumption of 

learning-via-prediction models is correct. But if this highly sophisticated ability is slow to 

develop, then prediction may instead be the product of learning, rather than the driving force 

behind it. 

 Here, we provide such a test, using visual-world eye-tracking, the same paradigm that 

shows semantic prediction in children (e.g., Mani & Huettig, 2012). Although eye-tracking 
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cannot measure sound predictions directly, we designed our experiments so that, if 

participants generated an appropriate sound prediction, then they could predictively resolve 

the referent of an upcoming word (i.e., gaze to a predictable picture). In Experiment 1, 

children between two and five, as well as adults, viewed pairs of pictures (e.g., of a ball and 

an ice-cream) and heard instructions such as Can you see a…ball/an…ice-cream? (Figure 

1A). Our displays always paired a picture whose name begins with a vowel (vowel-initial 

picture) with one whose name begins with a consonant (consonant-initial picture). If listeners 

predict sound, then looks to the vowel-initial picture should be more frequent, and increase 

more rapidly over time, following an (vs. a), since an is more usually followed by a vowel 

than a, in most varieties of English1 (Raymond, Fisher, & Healy, 2002). Crucially, our 

sentences included a pause before the critical word, which gave children enough time to 

predict which object the speaker would refer to, before hearing the spoken name. 

We chose to test the a/an alternation first and foremost because it is a purely 

phonological alternation, so if participants can use it to predict an upcoming referent, then 

they must be doing so based on sound rather than meaning or grammar. Our study also 

followed DeLong et al. (2005), who used this alternation to investigate form prediction in 

adults. In their experiment, adults read contexts such as The day was breezy so the boy went 

outside to fly…, followed by either a or an. The amplitude of the N400 on the determiner was 

larger the less expected the determiner, suggesting that adults predicted the word kite and its 

form (i.e., that it begins with a consonant), and were thus more surprised to read an than a. 

Converging evidence is provided by Martin et al. (2013), who found a larger N400 to 

unexpected than expected determiners. However, very recent evidence suggests that the N400 

                                                 
1 Including the variety our participants were exposed to at the time of testing, namely Scottish 

English. 
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effect on the determiner may not be reliable (Ito, Martin, & Nieuwland, 2016; Nieuwland et 

al. 2017, though see Yan, Kuperberg, & Jaeger, 2017). Given the uncertainty surrounding 

that important finding, our study can thus also provide important evidence about form 

predictions in adults.  

In addition, the a/an alternation provides a close analogue to prior child studies. For 

example, Lew-Williams and Fernald (2007) employed a similar method to show that 2- and 

3-year-olds could use the syntactic gender of a determiner to facilitate processing of a 

subsequent noun: Spanish-learning children recognized la pelota (the ball) more quickly 

when the ball was the only potential referent with feminine gender (Lew-Williams & Fernald, 

2007, and see Johnson, 2005 for Dutch, Van Heugten & Shi, 2009, for French). Moreover, 

Mahr, McMillan, Saffran, Weismer, and Edwards (2015) showed that, when English-learning 

18- to 24-month-olds heard the ball, they gazed to the ball more quickly if the had been co-

articulated with the onset of ball, compared to when there was no co-articulation. This could 

suggest that the co-articulatory information in the was used to predict the form of the 

subsequent noun, and thus its referent, but that study did not directly measure predictions 

(and children oriented to the target picture only after they had heard the target noun, ball); 

thus, co-articulation may have simply facilitated children’s recognition of ball, rather than 

caused children to predict it.  

In sum, even children under two are sensitive to the information carried by 

determiners, including subtle co-articulatory cues, which suggests that, if they can generate 

sound predictions at all, then they should be able to do so based on the a/an alternation, 

which is simple (an precedes vowels), frequent, and relies on a salient phonological 

distinction (i.e., between vowels and consonants). However, there is also some evidence that 

children’s ability to use this alternation in an adult-like way is somewhat delayed: Whereas 

three-year-olds never use an before consonants (suggesting that they appreciate the 
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distinction between the determiners), children will sometimes use a before vowels until the 

school years (McKee & McDaniel, 2009). This delay need not reflect incomplete knowledge 

of the alternation, but it might imply that only older children will predict sound in our task. 

As a control condition, Experiment 1 thus compared sound-prediction to a matched 

meaning-prediction task. The same participants who heard sentences such as Can you see a 

…ball/an… ice-cream? also responded to sentences such as Can you see one…ball/two…ice-

creams?, while looking at pictures of one ball (one-object picture) and two ice-creams (two-

object picture; Figure 1B). If listeners use determiners (i.e., the numerals one and two) to 

predict numerosity, then looks to the two-object picture should be more frequent and increase 

more rapidly over time following two than one. We know that even two-year-olds understand 

one as exact (i.e., as meaning “one and no more than one”; Barner, Chow, & Yang, 2009), 

and we therefore expected all four age groups to predict numerosity. In addition, we 

measured children’s comprehension vocabulary, and hypothesized that children with larger 

vocabularies would show larger prediction effects, as in previous work (e.g., Borovsky et al., 

2012; Mani & Huettig, 2012).  

 

 

 

 

 

 

 

 

 

Figure 1. Experiment 1; Sample sound-prediction (A) and meaning-prediction (B) trials. 
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(A) Oh! look! Can you see a… ball /  
an… ice-cream?  

 

 

(B) Oh! look! Can you see one… ball /  
two…   ice-creams?  

 

 

Experiment 1 

Method 

Participants. Participants were twenty-four adult native speakers of English (Mage: 

21.0 years, [18,24], 5 males), 40 English-learning two-year-olds (Mage: 29 months, [20,35], 

21 males), 47 three-year-olds (Mage: 41 months, [36,47], 22 males), and 40 four-to-five-year-

olds (Mage: 53 months, [48,65], 21 males). Three more children were tested but discarded 

because they did not complete the task, were diagnosed with language delay, or because of 

equipment failure. We recruited most children (121) from private nursery schools around 

Edinburgh, and the rest from a database of interested families. Testing continued until there 

were at least 40 children in each group; the larger sample size for three-year-olds is due to 

this group being the largest in nurseries. Ethnicity and SES were not recorded, but were 

representative of the area (almost entirely white, predominantly from middle-class Scottish 

families).  

Materials and procedure. Stimuli were ten pairs of vowel-initial and consonant-

initial words (aeroplane-car, ant-duck, apple-balloon, arm-train, ear-hat, egg-spoon, 

elephant-dog, eye-bubble, orange-tree, ice cream-ball), and corresponding pictures (see 
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Figure 1). Each pair was used on 4 different trials (once per determiner: a/an/one/two), for a 

total of 40. On sound-prediction trials, participants saw one exemplar of each picture. On 

meaning-prediction trials, they saw a one-object picture and a two-object picture. On half the 

trials the two-object picture was vowel initial, and on half the trials it was consonant initial 

(counterbalanced across lists). Position of the vowel-initial picture (left/right) was 

counterbalanced between items. 

Each trial began with a two-second silent preview of the pictures, followed by a 

sentence of the form Oh! Look! Can you see a…ball/an…ice-cream/one…ball/two…ice-

creams?, pre-recorded by a female native speaker of Scottish English with child-directed 

prosody. Determiners were long (a: 350ms; one, two, an: 700ms) and carried stress. Carrier 

phrases (e.g., Can you see a…) were recorded separately, and nouns were spliced into the 

recordings later to avoid informative co-articulatory cues on the determiner. A pause inserted 

before the noun ensured children had time to make predictive eye-movements. Target nouns 

always began approximately 1200ms after determiner onset (so a was followed by a longer 

pause than the other determiners). 

Participants were instructed simply to look and listen. To engage children, the task 

was presented as a game in which they collected stars to obtain stickers. Two seconds after 

the onset of the target noun (and regardless of the child’s performance), a star appeared next 

to the target picture, after which the experimenter placed stickers onto a chart that the child 

could keep at the end. Presentation order was individually randomized. Stimuli appeared on a 

laptop fitted with a REDn Scientific eye-tracker (SensoMotoric Instruments GmbH, 

www.smivision.com). The tracker was calibrated once at the start of the session and once 

after 20 trials using a 5-point grid.  It recorded fixations binocularly at 30Hz, but we only 

analyzed right-eye fixations. After the listening task, children completed the British Picture 

http://www.smivision.com/


RUNNING HEAD: Predictions of sound and meaning 

 13 

Vocabulary Scale (Second Edition, Dunn, Dunn, Whetton, & Burley, 1997), as a measure of 

comprehension vocabulary. Sessions lasted 20-30 minutes. 

Analysis. Since sound- and meaning-prediction trials were not part of a crossed 

experimental design (e.g., there is no trial where an is used to refer to two objects), we first 

analyzed them separately. To test whether participants predicted sound, we modeled the 

proportion of looks to the vowel-initial picture; to test prediction of meaning, we modeled 

looks to the two-object picture.2 Follow-up analyses compared the models to assess whether 

participants predicted sound to the same extent as meaning. All analyses also compared each 

age group (2-year-olds, 3-year-olds, 4-to-5-year-olds, and adults) to the immediately younger 

one using backward difference coding. Follow-up analyses examined each age group 

separately. 

Using BeGaze (Version 3.6), we grouped raw data into fixations to areas of interest 

(corresponding to the right-hand side and the left-hand side of the screen), in 100ms 

increments, during a 1300ms window beginning at determiner onset and ending 100ms after 

the earliest (across items) noun onset (the 100ms delay accounts for delays in launching eye-

movements; Trueswell, 2008). We discarded any trials on which no gaze was recorded (due 

to looking away, or track loss) on 60% or more of the samples (2-year-olds: 20.2% of trials, 

3-year-olds: 18.0%, 4-5-year-olds: 9.7%, adults: 1.0%), and a further 6 trials for experimenter 

error.  

We analyzed how participants’ predictive fixations changed over time, using growth 

curve analyses (Mirman, 2014). There were two sets of analyses, one averaging over items 

                                                 
2 Qualitatively similar results held when modelling looks to the consonant-initial picture and 

the one-object picture, respectively. 
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(i.e. with participants as random effects) and one averaging over participants (i.e., with items 

as random effects). The purpose of averaging is to obtain more robust estimates, and the 

purpose of the two sets of analyses is to be able to generalize both over participants and over 

items. We applied the empirical logit transformation to our averaged proportion data, as 

recommended by Barr (2008). Models had the structure: 1 + Determiner + Time + AgeGroup 

+ a linear Time term, plus their full set of interactions, and a maximal random effects 

structure (Barr, Levy, Scheepers, & Tily, 2013), except when otherwise specified; random 

correlations were always set to zero to aid convergence (Bates, Kliegl, Vasishth, & Baayen, 

2015).3 The effect of Determiner captures overall differences between conditions: A positive 

estimate indicates participants were more likely to look at the vowel-initial (two-object) 

picture after an (two) than after a (one). The interaction between Determiner and the linear 

time term captures how gaze changed over time: A positive estimate indicates that 

participants looked increasingly more to the vowel-initial (two-object) picture after an (two) 

than a (one). Fixed effects were contrast coded and centered. Follow-up analyses of 

children’s eye-movement data additionally investigated whether prediction varied with the 

size of their comprehension vocabulary (raw BPVS score), while controlling for age in 

months (both centered). Vocabulary scores ranged from 9 to 85, and strongly correlated with 

age (r(125)=0.77, p<.001).  

Results 

Meaning-prediction trials. We found that both children and adults could use the 

meanings of numbers to predictively resolve upcoming referents. As shown in Figure 2, left 

panel, the average proportion of looks to the two-object picture, computed over the entire 

prediction window, was higher after the word two than after one for adults, four-to-five-year-

                                                 
3 Models with quadratic time terms led to the same conclusions. 
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olds, and three-year-olds. This was confirmed by significant effects of Determiner in by-

participant and by-item analyses (analysis type indicated by [p] and [i], respectively, Table 

1). Only two-year-olds did not show this effect (see Table 1).4  

However, as Figure 2 (right panel) shows, the lack of an overall effect in two-year-

olds was qualified by an interaction of Determiner with Time: After hearing two, two-year-

olds increasingly looked to the two-object picture as the trial progressed, especially towards 

the end of the prediction window (and the same was true for all other age groups, Table 1).5  

 

 

 

 

 

 

                                                 
4 The effect of Determiner did not vary with the children’s vocabulary (all p’s >.05). By-item 

analyses did not include interactions between age and vocabulary in the random structure. 

5 The increase in predictive looks over time was faster for children with larger vocabularies 

among three-year-olds (Determiner:Time:Vocabulary, [p] Beta= .09, SE=.04, CI=[.02,.16], 

t=2.46; χ2(1)=6.37, p=.01; [i] Beta= .04, SE=.01, CI=[.02,.06], t =4.22; χ2(1)=11.70, p<.001) 

and four-to-five-year-olds (Determiner:Time:Vocabulary, [p] Beta= .06, SE=.03, 

CI=[.008,.110], t =2.26; χ2(1)=5.49, p=.02; [i] Beta= .02, SE=.01, CI=[.005,.043], t =2.50; 

χ2(1)=6.02, p=.01); there were no effects of vocabulary in 2-year-olds (all p’s >.05).  
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Table 1. Summary of critical growth-curve model effects for meaning-prediction trials, in by-

participant [p] and by-item [i] analyses. From left to right: estimates (SE), 95% Confidence 

Intervals or CI (from the confint function, method=“Wald”), t values, and chi-square and p 

values from log-likelihood ratio tests. 

Age Group Analysis Determiner Determiner:Time 

2 yo [p] 

 

[i] 

.16(.12), CI=[-.07,.39], t= 1.37; 

χ2(1)=2.02, p=.155 

.08(.08), CI=[-.08,.23], t= 0.99; 

χ2(1)=1.06, p>.250 

.97(.29), CI=[.39,1.54], t= 3.28; 

χ2(1)=10.52, p=.001 

.62(.17), CI=[.28,.96], t= 3.59; 

χ2(1)=11.08, p=.001 

3 yo [p] 

 

[i] 

.72(.14), CI=[.45,.99], t= 5.16; 

χ2(1)=25.32, p<.001 

.42(.06), CI=[.30,.54], t= 6.76; 

χ2(1)=25.54, p<.001 

1.84(.33), CI=[1.19,2.49], t= 5.53; 

χ2(1)=28.57, p<.001 

1.13(.17), CI=[.80,1.46], t= 6.70; 

χ2(1)=25.64, p<.001 

4-5 yo [p] 

 

[i] 

.60(.10), CI=[.40,.79], t= 6.05; 

χ2(1)=32.82, p<.001 

.36(.04), CI=[.28,.45], t= 8.66; 

χ2(1)=26.83, p<.001 

2.02(.32), CI=[1.39,2.64], t= 6.28; 

χ2(1)=34.94, p<.001 

1.23(.13), CI=[.98,1.49], t= 9.42; 

χ2(1)=31.49, p<.001 

Adults [p] 

 

[i] 

1.69(.14), CI=[1.42,1.96], t= 

12.14; χ2(1)= 68.95 , p<.001  

1.20(.08), CI=[1.05,1.36], t= 

15.23; χ2(1)=52.63, p<.001 

4.48(.30), CI=[3.89,5.07], t= 14.87; 

χ2(1)= 84.46 , p<.001 

3.22(.18), CI=[2.88,3.57], t= 18.18; 

χ2(1)=54.73, p<.001 
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Figure 2. Meaning-prediction trials. (Left panel): average proportion of looks to the two-

object picture during the prediction window, after one (left bar) or two (right bar); error bars 

represent 95% CI computed over 1000 bootstrapped samples; superimposed numbers are 

means (and standard deviations). (Right panel): proportion of looks to the two-object picture 

over time during the same prediction window. Points are observed values; lines (solid for 

one, dashed for two) were obtained by non-parametric smoothing (method=“loess”, with 95% 

CI shaded in grey). p values correspond to the main effect of Determiner in the left panels 

and to the Determiner:Time interaction in the right panels (see Table 1; *** = p >.001, ** = p 

< .01, * = p <.05; [p] = by-participant analysis, [i] = by-item analysis). 
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Cross-age comparisons showed that the effect of Determiner was larger in three- than 

two-year-olds ([p] Beta = .50, SE = .16, CI =[.19,.82], t= 3.18, χ2(1)=10.19, p=.001; [i] 

Beta=.29, SE = .10, CI =[.10,.49], t= 2.92, χ2(1)=7.83, p=.005), and in adults than in four-to-

five-year-olds ([p] Beta = 1.07, SE = .19, CI =[.70,1.44], t= 5.68, χ2(1)=31.40, p<.001; [i] 

Beta = .85, SE = .08, CI =[.70,1.00], t= 10.99, χ2(1)=40.03, p<.001), but did not differ 

between three- and four-to-five-year-olds (both p’s >.05). We also found a similar 

developmental pattern for the interaction of Determiner with Time, which again was larger in 

three- than two-year-olds (although this effect was reliable only in by-items analyses; [p] 

Beta = .56, SE = .42, CI =[-.26,1.38], t= 1.35, χ2(1)=1.87, p=.171; [i] Beta = .43, SE = .12, 

CI =[.19,.67], t= 3.55, χ2(1)=12.62, p<.001), and in adults than in four-to-five-year-olds ([p] 

Beta = 2.35, SE = .50, CI =[1.38,3.32], t= 4.73, χ2(1)=22.18, p<.001; [i] Beta = 1.96, SE=.17, 

CI =[1.63,2.30], t= 11.48, χ2(1)=131.68, p<.001), but did not differ between three- and four-

to-five-year-olds (both p’s >.05). 

Sound-prediction trials. While all age groups showed strong evidence of predicting 

meaning, the pattern for predictions of sound were quite different (Figure 3 and Table 2). 

Adults produced strong evidence of phonological predictions; they looked more to the target 

overall and increasingly looked to the target as the trial progressed. Two-year-olds showed no 

evidence of phonological predictions, either overall or over the trial6. Older children, by 

contrast, did look overall more to the vowel-initial picture after hearing an, as indicated by 

                                                 
6 Two-year-olds with larger vocabularies did show increased looks towards the vowel-initial 

picture after an compared to after a (Determiner:Vocabulary: [p] Beta = .032, SE=.001, 

CI=[.015,.048], t =3.69; χ2(1)=12.84, p<.001; [i] Beta = .017, SE=.006, CI=[.006,.028], t 

=3.07; χ2(1)=8.49, p=.004; there were no effects of vocabulary in the other age groups, all 

p’s <.05) 
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significant effects of Determiner in both by-participant and by-item analyses (Table 2 and 

Figure 3, left panel)7. Comparisons across age groups showed that the effect of Determiner 

was larger in adults than in four-to-five-year-olds ([p] Beta= .55, SE = .16, CI =[.23,.86], t= 

3.43, χ2(1)=11.59 p<.001; [i] Beta = .43, SE = .10, CI =[.24,.63], t= 4.38, χ2(1)=14.61, 

p<.001), but did not differ between children of different ages (all p’s >.05).  

However, although these older children showed an overall preference for the target, 

the temporal dynamics of their predictive gaze was not adult-like. Whereas adults looked 

more to the vowel-initial picture over time, just as they did on meaning-prediction trials, 

children did not show this effect (Figure 3, right panel). There was no significant interaction 

between Determiner and Time in any of the age groups (Table 2), and this did not depend on 

vocabulary (all p’s >.05).8 Accordingly, cross-age comparisons showed that the interaction of 

Determiner with Time was larger in adults than in four-to-five-year-olds ([p] Beta = 2.67, SE 

= .49, CI =[1.70,3.63], t= 5.42, χ2(1)=28.74, p<.001; [i] Beta = 2.07, SE = .18, CI 

=[1.72,2.41], t= 11.75, χ2(1)=137.77, p<.001), but did not differ between children of different 

ages (all p’s >.05).  

 

 

                                                 
7 By-item analyses did not include interactions between age and vocabulary in the random 

structure. 

8 If anything, the Determiner:Time interaction was slightly smaller in three-year-olds with 

larger vocabularies, although only significant in by-items analyses ([p] Beta = -.06, SE = .03, 

CI =[-.12,.01], t=-1.69, χ2(1)=3.04, p=.081; [i] Beta =-.04, SE =.02 , CI =[-.08,-.01], t=-2.25  

χ2(1)=4.75, p=.029).  
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Table 2. Summary of critical growth-curve model effects for sound-prediction trials. 

Age Group Analysis Determiner Determiner:Time 

2 yo [p] 

 

[i] 

-.02(.09), CI=[-.20,.16], t= -0.23; 

χ2(1)=0.06, p>.250 

-.02(.06), CI=[-.14,.11], t= -0.26; 

χ2(1)=0.07, p>.250 

.31(.32), CI=[-.31,.93], t= 0.98; 

χ2(1)=1.06, p>.250 

.10(.20), CI=[-.30,.49], t= 0.48; 

χ2(1)=0.26, p>.250 

3 yo [p] 

 

[i] 

.21(.10), CI=[.02,.40], t= 2.18; 

χ2(1)=5.08, p<.05 

.15(.04), CI=[.08,.22], t= 4.26; 

χ2(1)=11.49, p<.001 

.24(.31), CI=[-.37,.86], t= 0.78; 

χ2(1)=0.66, p>.250 

.04(.13), CI=[-.23,.30], t= 0.28; 

χ2(1)=0.08, p>.250  

4-5 yo [p] 

 

[i] 

.21(.09), CI=[.03,.38], t= 2.33; 

χ2(1)=5.50, p=.02 

.14(.06), CI=[.03,.25], t= 2.48; 

χ2(1)=5.19, p=.02 

.07(.35), CI=[-.62,.76], t= 0.20; 

χ2(1)=0.04, p>.250 

.01(.14), CI=[-.27,.29], t= 0.07; 

χ2(1)=0.003, p>.250  

Adults [p] 

 

[i] 

.75(.14), CI=[.48,1.02], t= 5.45; 

χ2(1)=23.89, p<.001 

.57(.09), CI=[.38,.75], t= 6.09; 

χ2(1)=17.30, p<.001  

2.80(.32), CI=[2.17,3.43], t= 8.68; 

χ2(1)=46.52, p<.001 

2.09(.32), CI=[1.47,2.72], t= 6.57; 

χ2(1)=24.36, p<.001 

 

 



RUNNING HEAD: Predictions of sound and meaning 

 21 

Figure 3. Sound-prediction trials. (Left panel): average proportion of looks to the vowel-

initial picture after a (left bar) or an (right bar) during the prediction window. (Right panel): 

proportion of looks to the vowel-initial picture over time during the same time window (solid 

lines for a, dashed lines for an). p values are the same as in Table 2. All other details as in 

Figure 2. 

 

A direct comparison between our experimental conditions (Table 3) confirmed that 

the rate at which looks to the target increased over time (i.e., the interaction of Determiner 

and Time) was smaller on sound-prediction trials than on meaning-prediction trials, in all age 

groups except two-year-olds. Additionally, the overall prediction effect was greater for 
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meaning than sound in all age groups apart from two-year-olds.9 In sum, children and adults 

showed strong effects of predicting meaning, and adults showed strong evidence of 

predicting form. But children only showed limited evidence of predicting form, in a fashion 

that was qualitatively different from their prediction of meaning. 

 

 

 

 

 

 

 

 

 

 

                                                 
9 By-items analyses of children data did not include interactions between age and vocabulary 

in the random structure. The 4-to-5-year-old model did not contain any random terms for 

either age or vocabulary to aid convergence, while the 2-year-old model did not include the 

random interactions between Trial Type:Determiner or Trial Type:Determiner:Time and 

either age or vocabulary.  



RUNNING HEAD: Predictions of sound and meaning 

 23 

Table 3. Summary of critical growth-curve model effects for the comparison between sound- 

and meaning-prediction trials.  

Age Group Analysis Determiner:Trial Type Determiner:Time:Trial Type 

2 yo [p] 

 

[i] 

-.18(.15), CI=[-.47,.11], t=-1.20; 

χ2(1)=1.57, p=.211 

-.09(.09), CI=[-.27,.10], t=-0.93; 

χ2(1)=0.91, p>.250 

-.66(.43), CI=[-1.51,.19], t=-1.52; 

χ2(1)=2.52, p=.112 

-.51(.26), CI=[-1.025,-.004], t=-1.98; 

χ2(1)=4.12, p=.042 

3 yo [p] 

 

[i] 

-.51(.17), CI=[-.83,-.18], t=-3.04; 

χ2(1)=9.66, p=.002 

-.26(.06), CI=[-.38,-.15], t=-4.42; 

χ2(1)=12.20, p<.001 

-1.58(.39), CI=[-2.35,-.81], t=-4.00; 

χ2(1)=14.19, p<.001 

-1.10(.21), CI=[-1.51,-.68], t=-5.18; 

χ2(1)=22.69, p<.001 

4-5 yo [p] 

 

[i] 

-.44(.14), CI=[-.71,-.17], t=-3.19; 

χ2(1)=10.57, p=.001 

-.25(.07), CI=[-.39,-.11], t=-3.46; 

χ2(1)=10.34, p<.001 

-1.98(.47), CI=[-2.91,-1.05], t=-4.16; 

χ2(1)=18.16, p<.001 

-1.23(.19), CI=[-1.61,-.86], t=-6.47; 

χ2(1)=25.92,  p< 001 

Adults [p] 

 

[i] 

-.94(.19), CI=[-1.32,-.56], t=-4.89; 

χ2(1)=21.48, p<.001 

-.64(.10), CI=[-.83,-.44], t=-6.30; 

χ2(1)=19.53, p<.001 (i) 

-1.68(.36), CI=[-2.39,-.98], t=-4.67; 

χ2(1)=18.66, p<.001 

-1.13(.33), CI=[-1.79,-.47], t=-3.38; 

χ2(1)=10.57, p=.001 (i) 
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Discussion 

Experiment 1 tested whether children can use an indefinite determiner (a/an) to 

predict the form of an upcoming word, and compared this to predictions about meaning based 

on numerals (one/two). Children were clearly able to generate predictions based on meaning. 

The numerals constrained predictive looks even in two-year-olds, and three-to-five year-olds 

produced a pattern of predictive gazes that was almost adult-like (i.e., showing both an 

overall difference in predictive looks between numerals and an increase in this difference 

over time). 

In contrast, predictions based on form showed a marked developmental change. 

Adults could clearly use the form of the indefinite determiner to predict the upcoming word, 

while two-year-olds showed no evidence of predicting form at all. Children older than three, 

however, displayed an unexpected pattern. When they heard an, these children were – overall 

– more likely to look at the vowel-initial picture (ice-cream), but this tendency to gaze 

toward the predicted picture did not increase over the trial as it did for adults, and as it did for 

all ages on meaning-prediction trials. Instead children showed a small but stable preference 

for the phonologically predictable picture throughout the prediction window.  

This result may appear to provide evidence for form-based predictions in young 

children. However, because the small-but-stable preference that we observed in children was 

so different from the steady rise we observed in adults, it deserves additional scrutiny. 

Importantly, this type of gaze behavior is quite distinct from the findings of most eye-

tracking studies of word recognition and prediction, which tend to show an increase in looks 

to the upcoming referent over time, as listeners process more of the linguistic input.  

One possibility is that this small prediction effect is driven by predictive processing 

that is less stable in children (e.g., across listeners, or across items), resulting in an overall 
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effect, but no large increase in accuracy over time. Alternately, the effect may be caused by a 

looser linkage between children’s eye movements and their incremental uptake of linguistic 

information over time. However, it is also possible that this small-but-stable difference 

between conditions is instead the result of unexpected baseline differences. For example, 

visual inspection (see Figure S1) suggested that children tended to look more at the vowel-

initial picture even before the determiner an was actually said. This baseline difference could 

reflect random variation in sampling, but could also index something more systematic. In 

particular, Experiment 1 used a yoked picture design with repetitions, in which each pair of 

pictures (e.g., ball and ice-cream) was presented twice in each condition, with the identity of 

the target switching between presentations. Such a design is common in the field (e.g., Lew-

Williams & Fernald, 2007; Mahr et al., 2015; see Supplementary material for a fuller 

discussion of this), because children’s vocabularies are so limited. However, it opens up the 

possibility that children might systematically track which pictures have been mentioned, and 

preferentially gaze to unmentioned pictures, causing a bias in favor of the target on its second 

presentation. Consistent with this, visual inspection of Figure S3 (left panel) suggested that 

children may not have predicted the target on those trials where they encountered a pair of 

pictures for the first time. By contrast, adults did do so, and both adults and children did 

predict the target when trials were first presented in the semantic condition (see Figure S2, 

left panel).  

These considerations mean that, while Experiment 1 provided strong evidence that 

both children and adults could use meaning to generate expectations about upcoming words, 

and that adults could also generate form-based expectations, the evidence that 3-to-5-year-

olds could generate form-based expectations was more equivocal: The pattern of findings 

could reflect genuine form prediction, or could indicate children’s ability to track labeling 

episodes in our experiment. Thus, Experiment 2 used a modified design to provide an 
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unambiguous test of the hypothesis that children can generate form-based expectations about 

upcoming words. 

Experiment 2 

We modified Experiment 1 in two critical ways. First, we systematically manipulated 

whether children could predict an upcoming word based only on its form, or could instead 

rely on which pictures had, and had not, been previously labeled. We did this by controlling 

trial order such that there were equal numbers of New trials (where neither the target nor the 

non-target picture had been previously labeled) and Old trials (where the non-target picture 

had been previously labeled). 

Second, we replaced meaning-prediction trials with a new set of sound-prediction 

trials, Same Onset trials, in which the names of both pictures (e.g., ball and tree) began with 

the same type of phoneme (e.g., a consonant, similar to Lew-Williams & Fernald, 2007, and 

Mahr et al, 2015). The logic here is that, if children can indeed use the determiner to generate 

form-based predictions, then they should be more likely to launch predictive looks to the 

target picture (ball) when they hear the determiner on Different Onset trials (ball and ice-

cream) than on Same Onset trials (ball and tree), and they should also be faster to recognise 

the target picture name (ball), when it occurs on Different Onset trials than on Same Onset 

trials. Moreover, the contrast between children’s performance on Same Onset and Different 

Onset trials can additionally inform us about children’s ability to track an experiment’s 

structure. If they can, then they should be able to predict the target even on Same Onset trials, 

where the determiner itself is uninformative. 

In sum, if children indeed generate form-based expectations, then they should show 

more predictive looks to the target picture on Different Onset trials (ball and ice-cream) than 

Same Onset Trials (ball and tree), and should also be faster to recognize the noun on those 
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Different Onset trials. Moreover, if children can track which picture has been labeled, then 

they should show increased predictive looks to the target on Old trials, where they can predict 

which picture will be named from the structure of the experiment.  

Method 

Participants. Participants were 41 three-year-olds (Mage : 43 months, [36,47], 18 

males), and 41 four-to-five-year-olds (Mage: 54 months, [48,69], 23 males). We did not test 2-

year-olds, as Experiment 1 found no evidence that they predict sounds. An additional 7 three-

year-olds and 6 four-to-five-year-olds were excluded because they did not pay attention to the 

task, did not finish the task, were difficult to calibrate, or because of equipment failure. We 

recruited 42 children from nursery schools and libraries around Edinburgh, and the remainder 

from a lab database. We continued testing until there were at least 40 children in each group. 

Ethnicity and SES were not recorded, but were representative of the area as in Experiment 1.  

Materials and procedure. We used the same twenty words and pictures as in 

Experiment 1; again, there were two blocks of 20 trials each. Each picture appeared twice per 

block (once as the named target). On half the trials, the two pictures had English names 

beginning with the same type of phoneme (i.e., both consonant- or vowel-initial; Same 

Onset), so that the determiner was appropriate for both names; on the other half, the picture 

names began with different phonemes (one consonant- and one-vowel initial; Different 

Onset), so the form of the determiner was informative. Within each Onset condition, half the 

trials named the vowel-initial picture and half named the consonant-initial picture. Position of 

the target (named) picture (left/right) was counterbalanced between items. 

 Unlike in Experiment 1, each time a picture appeared it was paired with a different 

picture (i.e., we never repeated picture pairs). Picture pairings and presentation order were 

pseudorandomized within each block so that half of the trials were New and half were Old, 
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and this was the case within both the Same Onset and the Different Onset condition. On New 

trials, neither the target nor distractor picture had been previously labeled (within the same 

block), but on Old trials the distractor picture had been previously labeled (within the same 

block), and so children could guess the target’s identity if they were tracking labeling 

episodes. 

 Within each block, we further counterbalanced which Onset condition a picture 

appeared in on first presentation and, within each Onset condition, whether a picture was the 

named target or the distractor on first presentation. Vowel-initial and consonant-initial 

pictures were equally likely to appear first as target or distractor. Ten pictures appeared first 

as target or distractor in both blocks, whereas for the other 10, the role on first presentation 

was switched between blocks. The order of presentation of blocks was counterbalanced 

across participants, as was the pseudorandomized order of presentation of trials (forward or 

backward). In any case, there were no more than three consecutive trials on which the target 

shared the same type of initial phoneme or the same condition (Different vs. Same Onset) 

was repeated.   

Every other aspect of the procedure was the same as in Experiment 1, and we also 

used the same pre-recorded sentences. However, children did not complete the vocabulary 

test, since it had little predictive power in Experiment 1  

Analysis. We only analyzed right-eye fixations, using growth curve analyses as in 

Experiment 1, but with differently structured models to account for the design of Experiment 

2. Whereas in Experiment 1 the key comparison was between predictive looks to the vowel-

initial picture as a function of the determiner (an/a), in Experiment 2 there were two key 

comparisons: 1) whether children used the structure of the experiment (New versus Old 

trials) to generate expectations about referents, and 2) whether children took advantage of 
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Different Onset trials, but not Same Onset trials, to generate predictions about form, and 

more quickly recognise the target word. Our models thus collapsed across determiners (an/a) 

and analyzed fixations to the target (i.e., named) picture.  

We first analyzed children’s predictions, using the same time window as Experiment 

1. We measured the effect of New versus Old trials by fitting a model with the structure: 1 + 

Trial Type + a linear Time term + Trial Type:Time, plus a main effect of Age group and 

interactions between Age group and all of the other terms (and random effects). To analyze 

whether children could generate expectations on Different Onset trials but not Same Onset 

trials, we fit a model with the structure 1 + Onset + a linear Time term + Onset:Time, plus a 

main effect of Age group and interactions between Age group and all of the other terms (and 

random effects). We fit the latter model separately to New and Old trials, with the 

expectation that children need not rely on phonological predictions in Old trials, because they 

could guess the target from memory. In all models, fixed effects were contrast coded and 

centered, and random effects structure was maximal (Barr et al., 2013), with correlations set 

to zero (Bates et al., 2015).  

We then assessed word recognition, in a window that began where the prediction 

window ended and lasted until 1s after the earliest noun onset. Here, we analyzed the effect 

of Different versus Same Onset trials, using a growth curve model that had the same structure 

as above.  

Since there were no significant interactions with the linear time term in any of the 

analyses, our graphs only display average proportions across the whole Prediction (Figure 4) 

or Recognition window (Figure 5), but full time course graphs can be found in the 

Supplementary materials (Figures S4 and S5). We again discarded trials on which no gaze 

was recorded on at least 60% of the samples (3-year-olds, prediction window: 11.6%, 
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recognition window: 8.1%; 4-5-year-olds, prediction: 8.7%, recognition: 6.9%), and a further 

trial for experimenter error.  

 Finally, we conducted an additional analysis following Lew-Williams and Fernald 

(2007) that measured the latency of the first fixation to the target picture after determiner 

onset, and whether this was earlier on Different Onset than on Same Onset trials. Trials were 

included in this analysis only if: (1) at determiner onset, the child was not fixating the target 

picture, and (2) the first fixation to the target began at least 100ms after determiner onset and 

no later than 1100ms after noun onset. After applying these criteria, 56.4% of trials were left 

for analysis. We used a linear mixed-effect model with a Gaussian link function and maximal 

random structure for both participants and items (but with random correlations set to zero). 

We again analyzed new trial and old trials separately. The model’s fixed effects had the 

following form: 1 + Onset*Age. 

Results 

Prediction window – Growth curve. We first analyzed if children were indeed 

tracking labeling episodes, and predicting which picture would be mentioned based on 

memory. Children were much more likely to look at the target on Old than on New trials ([p] 

Beta =-.46, SE =.05, CI=[-.56,-.36], t=-9.12, χ2(1) =64.82, p<.001; [i] Beta = -.48, SE =.07, 

CI=[-.63,-.34], t=-6.49, χ2(1) =23.42, p<.001), confirming that they could guess the target 

based on the previous trials. 

 We next asked whether children were also using the form of the determiner to predict, 

focusing on those trials where they could not rely on memory (i.e., New trials). Our growth 

curve analysis did indeed provide evidence of prediction. We replicated the small-but-stable 

effect of prediction from Experiment 1, such that children looked more to the target on 

Different Onset trials (i.e., when the determiner was predictive) than on Same Onset trials. 
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However, this effect was only reliable in the by-participant analysis (Beta = .13, SE =.06, 

CI=[.01,.25], t=2.17, χ2(1)=4.69, p = .03; see Figure 4), and not by items (Beta = .12, SE = 

.15, CI=[-.17,.41], t=0.80, χ2(1)=0.66, p>.250). 10 Also as in Experiment 1, we did not find 

any evidence that children’s phonological predictions grew stronger over time (i.e., no 

interactions between Onset and Time, p > .250). 

On Old trials, where children could predict based on memory, they did not show 

effects of form-based prediction, either overall (Onset, [p] Beta =-.01, SE =.08, CI=[-.16,.14], 

t=-0.16; [i] Beta = -.01, SE =.11, CI=[-.22,.19], t=-0.14), or over time (i.e., no interactions 

between Onset and Time, p > .250). 

 One important question here is why Experiment 2 showed evidence of form-based 

prediction only in the by-participant analysis, but not the by-items analysis. Interestingly, 

inspection of the random effect structure of the by-item model suggested that the by-

participant effect was driven by a subset of items (8 out of 20) which showed a large effect of 

Onset on New trials11. This suggests that the prediction effect in this Experiment was driven 

                                                 
10 Additional analyses comparing children’s predictions in the first versus the second half of 

the experiment found no difference (Onset by Half interaction: by-participants, t = -1.60; by-

items, t = -0.01); thus, children’s predictions were weak throughout the experiment, and not 

just after encountering a number of (Same Onset) trials where prediction was not useful in 

identifying the target. 

11 Defined as Beta > .50 on the log-odds scale, which corresponds to 1.65 on the linear odds 

scale, i.e., the odds of looking at the target picture were 1.65 times higher on Different Onset 

trials than Same Onset trials for these items. The 8 target nouns were: aeroplane, ant, ball, 

dog, egg, ice-cream, orange, train.  
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by differential processing of a few items (which tended to be vowel-initial12, 5 out of 8); we 

return to the implications of this point in the Discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
12 It is unlikely this finding occurred because vowel-initial nouns were easier. If anything, 

they were more likely to be long compared to consonant-initial nouns (5/10 vs. 2/10 

polysyllabic nouns). In addition, all nouns were highly frequent in a corpus of subtitles of UK 

TV programs for pre-schoolers (Van Heuven, Mandera, Keuleers, & Brysbaert, 2014). 
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Figure 4. Experiment 2, New and Old sound-prediction trials. Prediction window. (Left 

panel): average proportion of looks to the target picture on New trials, when the two pictures 

had different onset names (left bar) or same onset names (right bar); error bars represent 95% 

CI computed over 1000 bootstrapped samples; superimposed numbers are means (and 

standard deviations). (Right panel): proportion of looks to the target picture during the same 

time window on Old trials. p values (also reported in text) indicate the effect of Onset. Plots 

of gaze over time can be found in the supplement. 

 

Recognition window – Growth curve. If children use the form of the determiner to 

predict an upcoming word, then they should also be faster to recognize the target word. 

Consistent with this, on New trials, children looked more to the target on Different Onset 

trials than Same Onset trials. Again, however, this effect was reliable only in the by-

participant analysis (Beta = .16, SE =.07, CI=[.03,.29], t=2.37, χ2(1)=5.67, p = .02; Figure 5), 

and not the by-items analysis (Beta = -.001, SE = .016, CI=[-.030,.028], t=-0.06, 

χ2(1)=0.003, p>.250). Unlike for the prediction window analyses, there was no clearly 
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identifiable subset of items driving the effect. There was no interaction of Onset by Time 

([p], Beta =.24, SE =.16, CI=[-.06,.55], t=1.55, χ2(1)=2.42, p=.120; [i] Beta =.22, SE =.28, 

CI=[.22,1.27], t=0.79, χ2(1)=0.62, p>.250). As expected, on Old trials, there was no effect of 

Onset (Onset, [p] Beta = -.01, SE =.06, CI=[-.13,.11], t=-0.16; [i] Beta = .06, SE =.03, CI=[-

.004,.117], t=1.82; Onset:Time, [p] Beta =.22, SE =.16, CI=[-.08, .53], t=1.43; [i] Beta =-.41, 

SE =.44, CI=[-1.27,.44], t=-0.94). 

Recognition window - First fixation latency. Unlike in the growth curve analyses, 

an analysis of first fixation times did not uncover an effect of Onset on either New (B=-25 

ms, SE=68, CI=[-158,108],t=-0.37) or Old trials (B=63 ms, SE=47, CI=[-29,154],t=1.34). 

 

Figure 5. Gaze to Target during Recognition window for Experiment 2. See Figure 4 for 

details. Plots of gaze over time can be found in the supplement. 
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Discussion 

 In Experiment 2, 3-to-5 year olds showed some limited ability to use the form of the 

determiner (a vs. an) to predict an upcoming noun. We also found some indication, from 

growth curve analyses, that hearing a predictive determiner facilitated children’s recognition 

of a word (i.e., enhanced looking to the target picture once the word was said), although this 

effect was not confirmed in first fixation latency analyses. Finally, we found good evidence 

that children could track the structure of the experiment to predict which picture would be the 

target, although this finding did not explain their apparent ability to predict using the 

determiner. 

 Importantly, and as we emphasized, the effect of predictive determiners on children’s 

prediction and recognition of words was, at best, weak and inconsistent, with a small subset 

of items apparently driving the effect. Interestingly, such items were (mostly) vowel-initial, 

which suggests a potential explanation. Some children may have performed better with these 

items because they had misanalysed the picture names (e.g., treating an ice-cream as a nice-

cream, and storing the latter as a lexical entry). If so, when children heard the nasal in a nice-

cream, they may have interpreted it as the onset of the target noun, and this might in turn 

have directed their attention towards the target picture. In sum, these analyses suggest that, up 

until the age of 5, children do make some predictive use of the determiners a and an, but it 

seems likely that this occurs on a noun-by-noun basis rather than across the whole lexicon.  

 

General Discussion 

 Two visual-world experiments investigated whether children are able to generate low-

level expectations about the forms of upcoming words. Experiment 1 showed that adults can 
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use the form of a determiner to generate expectations about upcoming sounds, but the data for 

children was more equivocal; in contrast, we found strong evidence that both children (even 

2-year-olds) and adults could generate high-level, semantic expectations about upcoming 

words. Experiment 2 confirmed that 3-to-5 year olds generate some predictions about the 

forms of upcoming nouns, but it also confirmed that the pattern of eye movements elicited by 

these predictions is quite distinct from the patterns elicited by semantic predictions (and by 

form predictions in adults). This suggests that there are important limitations to children’s 

ability to generate low-level predictions which, as we discuss, have implications for 

theoretical models of prediction and language learning.  

 

Is Prediction a Fundamental Component of both Language Processing and Learning?  

In the Introduction, we argued that detailed predictions about low-level features such 

as sound are a core assumption of any account which proposes that language develops 

through a process of online, prediction-driven learning. This is because predictions need to be 

grounded in a format that allows them to be compared against the input, even when the 

comprehender is learning about higher-level properties such as syntax or semantics, and 

especially when learning about the form of words (e.g., when learning irregular plural forms 

in English; see, for instance, Ramscar et al., 2013). 

Our data show that, even at age 5, children have limited skill at using linguistic 

context to predict form. Although children showed overall above-chance looking towards the 

target, they did not appear to predict the target consistently across all nouns, nor in a way that 

is tightly linked to the incremental uptake of linguistic information, as shown by their failure 

to increasingly look to the target over time. Why do children show such limited effects of 

form-based prediction, and what does this mean for predictive models of learning?  
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One possible explanation of the data pattern is that children’s form-based expectations 

are very inaccurate (e.g., because they have limited knowledge of the a/an alternation). This 

explanation would preserve the idea that form-based expectations may play an important role 

in learning, but seems unlikely because it also implies that older and more knowledgeable 

children should show better performance in our task. However, we observed little in the way 

of developmental change between older and younger children. A second possible explanation 

is that children predict the sounds of upcoming words, but do not use those predictions for the 

task of guessing the words’ referents. However, this explanation also seems unlikely, because 

18-month-olds are already able to guess the referents of spoken words on the basis of partial 

phonological information (e.g., showing an increase in looking towards a cat vs. a dog from 

the very moment they hear the onset of the word kitty; Fernald, Swingley, & Pinto, 2001).  

Thus, we suggest that a third explanation for our findings is the most likely. 

Children’s expectations about form are not inaccurate, or inconsequential for referent 

selection, but rather they are typically absent during sentence processing. As children listen to 

a sentence unfold, they generate expectations about the meanings of upcoming words, but 

they do not generate expectations about the forms of those words. Given adults can do the 

latter, the ability to generate online expectations about form is thus a skill that develops as we 

become expert language users, rather than a skill that makes language learning possible. 

Under this account, the limited effects of form prediction that we observed in children 

do not reflect true predictions, but rather misanalyses of some nouns by some children, e.g., 

representing an ice-cream as a nice-cream. Such misanalyses may reflect children’s attempts 

at chunking their input (McCauley & Christiansen, 2014b), and constitute the basis on which 

children later develop an adult-like ability to predict the noun based on the form of the 

determiner. However, while these misanalyses biased some children to gaze to the correct 

referent as they heard the determiner, that bias appeared to dissipate during the pause before 
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the target noun, presumably because children received no additional linguistic information 

confirming their initial referent choice during that time; the result was a small preference 

which did not increase over time.  

We would argue that this conclusion imposes important constraints on the role that 

prediction plays in how children learn language. Most prediction-driven models assume that 

language learning occurs incrementally (word-by-word; e.g., Elman, 1990): As sentences 

unfold, the learner generates expectations about each upcoming word, derives a prediction 

error signal, and then updates an internal representation of the language to minimize such 

error. Our data suggest that children’s incremental expectations may not be detailed enough 

to support this type of learning.  

So, how do children learn? Instead of updating their expectations after every word in 

a fully incremental fashion, children may rely on more offline processes, such as hypothesis 

testing (e.g., Perfors, Tenenbaum, & Regier, 2011) or analogy (e.g., Gentner & Namy, 2006) 

during early learning. Alternatively, children may learn as they process language, but they 

may do so by incrementally updating statistical information about the co-occurrence of 

lexical items (McCauley & Christiansen, 2014a; Chater, McCauley, & Christiansen, 2016). 

This type of learning does not require children to generate detailed predictions based on 

higher-level knowledge and compare them to the input, but it can account for how children 

gradually develop the ability to generate top-down expectations of an increasing abstract 

nature (Christiansen & Chater, 2016). 

Importantly, it is still possible that children’s partially-developed prediction skills 

may facilitate their language learning, though in different ways. For example, predictions 

might lessen the processing burden that children face when trying to simultaneously learn and 

comprehend their language (e.g., Fernald, Marchman, & Hurtado, 2008a; Fernald et al., 2001; 
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Gambi et al., 2016; Lew-Williams & Fernald, 2007). There is strong evidence that children 

make predictions about the semantics of words (Mani & Huettig, 2012; Borovsky et al., 

2012; and Experiment 1 in this paper), and such predictions could faciliate fast and efficient 

comprehension, thus freeing up cognitive resources, which would allow children to focus on 

processing novel words and structures (Fernald, et al., 2008a) and even guessing their 

semantics, thus increasing the chances of encoding their meanings (e.g., Ferguson, Graf, & 

Waxman, 2014).  

There are of course some limitations to our conclusions. For example, the a/an 

distinction is just one example of form-based prediction, and it may represent a relatively 

weak predictive cue (see Ito et al., 2016); it will therefore be important to investigate form-

based prediction in other linguistic phenomena. Similarly, future studies may investigate at 

what age children begin making form predictions based on this alternation, and what other 

skills this may depend on (e.g., literacy). But overall, our findings do not accord with the idea 

that prediction drives language learning in young children; rather, we suggest prediction may 

facilitate language processing, which in turn may enhance the efficacy of learning.  

In sum, our findings support the idea that children must learn to predict (Rabagliati et 

al., 2016). Although children possess the ability to generate high-level expectations from 

early on, the main role of this ability may be to facilitate language processing (and, only 

indirectly, support learning). As they learn more and more about the complex patterns in their 

language, children might eventually also acquire the sophisticated, expert adult skills 

necessary to generate low-level expectations on a word-to-word basis. But such detailed low-

level expectations do not appear to drive language development in the preschool years, which 

runs counter to the idea that prediction is the basis of learning. 
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Methodological Implications: The Dangers of Item Repetitions 

 The results of both Experiments 1 (post-hoc analyses) and 2 (old vs. new trials) 

suggested that children as young as three tracked labeling episodes over the course of our 

experiment, and were using that information to guess which picture would be labeled next. 

This finding is important because item repetitions are present in many studies of children’s 

word recognition (see Fernald, Zangl, Portillo, & Marchman, 2008b and our Supplementary 

Material). Fortunately, however, there are reasons to believe the effects of this confound have 

been minimal. First, many studies have involved children younger than 2, and we did not find 

evidence for tracking in 2-year-olds. In addition, many studies used multiple exemplars for 

each depicted word meaning (e.g., using a variety of depicted balls), and this variability may 

help reduce children’s tracking (though this is yet to be tested). Nevertheless, we recommend 

that future studies, particularly those with older children, use a Latin Square design to avoid 

item repetition entirely, or alternatively introduce as much variability as possible to minimize 

tracking. 

 

Conclusion 

While young children robustly generate predictions about meaning, our study 

suggests that they do not use linguistic context to generate strong and consistent predictions 

about form, even by the age of five. We have argued that this finding is inconsistent with 

theories of language acquisition in which children learn from incrementally-generated 

prediction errors. We suggest that high-level expectations may facilitate children’s learning 

by minimizing the difficulty of language processing, but prediction cannot be the main driver 

of children’s language learning; rather, the ability to generate low-level expectations is a skill 

that must itself be learned by children. 
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Supplementary Material for 

Gambi, C., Gorrie, F., Pickering, M.J., & Rabagliati, H. (2018). The development of linguistic 

prediction: Predictions of sound and meaning in 2-to-5 year olds. 

List of Visual World Studies with Children Using Repeated Presentation of Pictures 

In the main paper, we report that children learned the repeated trial structure of our 

experiment. To assess whether this may be a problem for previous visual-world studies that 

have looked at children’s processing of determiners, we conducted a small survey of the word 

recognition literature cited in the main paper, that focused on the presence and number of 

picture repetitions, and whether pictures were yoked (i.e., always presented in the same 

pairs). Repetition of pictures was common. Johnson (2005) used 4 pictures, each of which 

appeared 6 times; Lew-Williams and Fernald (2007) used 8 pictures, each repeated 8 times; 

Van Heugten and Shi (2009) used 4 pictures, each repeated 6 times; Melançon and Shi (2015) 

used two pictures of novel objects that were each repated 6 times, and 5 pictures of familiar 

objects which were each repeated twice; Mahr et al. (2015) used 16 pictures, each repeated 

twice, although they corresponded to only 4 different entities (so each entity was repeated 8 

times). It was less common that studies explicitly reported whether pictures were yoked. 

Mahr et al. (2015) and Melançon and Shi (2015; for novel objects only) report that their 

pictures were yoked. Van Heugten and Shi (2009) list all of their trials: pictures pairs were 

repeated across grammatical trials where picture had different genders and ungrammatical 

trials, but were re-yoked to create grammatical trials where pictures had the same gender. It is 

not clear whether pictures were yoked or not in the other studies, but it is clear that the same 

picture served both as a target and a distractor on different trials.  
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Post-hoc Analyses of Experiment 1 

Baseline differences. 

Figure S1 – Proportion of looks to the two-object picture (top) or to the vowel-initial picture 

(bottom) over time, starting from 2 seconds before determiner onset. Points are observed 

values; lines were obtained by non-parametric smoothing (method=”loess”, with 95% 

confidence intervals shaded in grey). 

First vs. second occurrence of picture pairs. 
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Figure S2 – Meaning-prediction trials. A breakdown of Figure S1 by picture occurrence (First 

or Second). 
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Figure S3 – Sound-prediction trials. A breakdown of Figure S1 by picture occurrence (First or 

Second) 
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Experiment 2. Time Course Graphs. 

Prediction window. 

Figure S4. Sound-prediction New and Old trials. Prediction window. Average proportion of 

looks to the target picture on Different Onset (pink lines) and Same Onset trials (blue lines). 

Solid lines are for New Trials, dashed lines for Old trials. Points are observed values; lines 

were obtained by non-parametric smoothing.  
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Recognition window. 

Figure S5. Sound-prediction New and Old trials. Recognition window. All details are as in 

Figure S4. 
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