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The inferior temporal cortex is a potential cortical
precursor of orthographic processing in untrained
monkeys
Rishi Rajalingham 1,2, Kohitij Kar 1,2,3, Sachi Sanghavi1,2, Stanislas Dehaene4,5 & James J. DiCarlo 1,2,3✉

The ability to recognize written letter strings is foundational to human reading, but the

underlying neuronal mechanisms remain largely unknown. Recent behavioral research in

baboons suggests that non-human primates may provide an opportunity to investigate this

question. We recorded the activity of hundreds of neurons in V4 and the inferior temporal

cortex (IT) while naïve macaque monkeys passively viewed images of letters, English words

and non-word strings, and tested the capacity of those neuronal representations to support a

battery of orthographic processing tasks. We found that simple linear read-outs of IT (but not

V4) population responses achieved high performance on all tested tasks, even matching the

performance and error patterns of baboons on word classification. These results show that

the IT cortex of untrained primates can serve as a precursor of orthographic processing,

suggesting that the acquisition of reading in humans relies on the recycling of a brain network

evolved for other visual functions.
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Literate human adults can efficiently recognize written letters
and their combinations over a broad range of fonts, scripts,
and sizes1–3. This domain of visual recognition, known as

orthographic processing, is foundational to human reading abil-
ities, because the invariant recognition of the visual word form is
an indispensable step prior to accessing the sounds (phonology)
and meanings (semantics) of written words4. It is largely
unknown how orthographic processing is supported by neural
populations in the human brain. Given the recency of reading
and writing to the human species (a cultural invention dating to
within a few thousand years), it is widely believed that the human
brain could not have evolved de novo neural mechanisms for the
visual processing of orthographic stimuli, and that the neural
representations that underlie orthographic processing abilities
must build upon, and thus be strongly constrained by, the prior
evolution of the primate brain5,6. In particular, a dominant theory
is that the ventral visual pathway, a hierarchy of cortical regions
known to support visual object recognition behaviors, could be
inherited from recent evolutionary ancestors and minimally
repurposed (or “recycled”) through developmental experience to
support orthographic processing6. Consistent with this hypoth-
esis, functional imaging studies suggest that the postnatal acqui-
sition of reading is accompanied by a partial specialization of
dedicated cortical sub-regions in the human ventral visual path-
way, which ultimately become strongly selective to orthographic
stimuli7–9. However, given the limitations of human imaging
methods, it has been challenging to quantitatively test if and how
neural representations in the ventral visual pathway might be
reused to support orthographic processing.

Interestingly, the ventral visual processing stream—a
hierarchically-connected set of neocortical areas10—appears
remarkably well conserved across many primate species, includ-
ing Old-World monkeys, such as a rhesus macaques (Macaca
mulatta) and baboons (Papio papio), that diverged from humans
about 25 million years ago11. Indeed, decades of research have
inferred strong anatomical and functional homologies of the
ventral visual hierarchy between humans and macaque mon-
keys12–14. Previously, we observed striking similarities in invar-
iant visual object recognition behavior between these two primate
species15,16. Recent work suggests that non-human primates may
also mimic some aspects of human orthographic processing
behavior17,18. In particular, Grainger and colleagues showed that
baboons can learn to accurately discriminate visually-presented
four-letter English words from pseudoword strings17. Crucially,
baboons were not simply memorizing every stimulus, but instead
had learned to discriminate between these two categories of visual
stimuli based on the general statistical properties of English
spelling, as they generalized to novel stimuli with above-chance
performance. Furthermore, the baboons’ patterns of behavioral
performance across non-word stimuli was similar to the corre-
sponding pattern in literate human adults, who make infrequent
but systematic errors on this task. Taken together, those prior
results suggest that non-human primate models, while not cap-
turing the entirety of human reading abilities, may provide a
unique opportunity to investigate the neuronal mechanisms
underlying orthographic processing.

In light of this opportunity, we investigated the existence of
potential neural precursors of orthographic processing in the
ventral visual pathway of untrained macaque monkeys. Prior
neurophysiological and neuropsychological research in macaque
monkeys point to a central role of the ventral visual stream in
invariant object recognition19–21, with neurons in inferior tem-
poral (IT) cortex, the topmost stage of the ventral stream hier-
archy, exhibiting selectivity for complex visual features and
remarkable tolerance to changes in viewing conditions (e.g.
position, scale, and pose)19,22,23. It has been suggested that such

neural features could have been coopted and selected by human
writing systems throughout the world5,6,24. Here, we reasoned
that if orthographic processing abilities are supported by “recy-
cling” primate IT cortex—either by minimal adaptations to the IT
representation and/or evolutionary addition of new cortical tissue
downstream of IT—then this predicts that the initial state of the
IT representation, as measured in naïve macaque monkeys,
should readily serve as a computational precursor of orthographic
processing tests. Investigating the representation of letters and
letter strings in macaque IT cortex would not only directly test
this prediction but could also provide initial insights into the
representation of letters and letter strings prior to reading
acquisition.

To quantitatively test this prediction of the “IT precursor”
hypothesis, we first operationally defined a set of 30 orthographic
identification and categorization tasks, such as identifying the
presence of a specific letter or specific bigram within a letter string
(invariant letter/bigram identification), or sorting out English
words from pseudowords (word classification, also known in
human psycholinguistics as the lexical decision task). Given that
animals have no semantic knowledge of English words, ‘word
classification’ here refers to a visual (rather than lexical) dis-
crimination task, i.e., the ability to categorize letter strings as
words or pseudowords on the basis of visual and/or orthographic
features, generalizing to novel letter strings drawn from the same
generative distributions. Specifically, we used the generative dis-
tribution of four-letter English words (hereafter referred to as
“words”) and nonsense combinations of four letters with one
vowel and three consonant letters (hereafter referred to as
“pseudo-words”). We do not claim this set of tasks to be an
exhaustive characterization of orthographic processing, but an
unbiased starting point for that greater goal. We recorded the
spiking activity of hundreds of neural sites in V4 and IT of rhesus
macaque monkeys while they passively viewed images of letters,
English words and pseudoword strings (Fig. 1a). We then asked
whether adding a simple neural readout (biologically plausible
linear decoders, cross-validated over letter strings) on top of the
macaque IT representation could produce a neural substrate of
orthographic processing. We found that linear decoders that learn
from IT cortex activity easily achieved baboon-level performance
on these tasks, and exhibited a pattern of behavioral performance
that was highly correlated with the corresponding baboon beha-
vioral pattern. These behavioral tests were also met by leading
artificial neural network models of the non-human primate
ventral stream, but not by low-level representations of those
models. Taken together, these results show that, even in untrained
non-human primates, the population of IT neurons contains an
explicit (i.e., linearly separable), if still imperfect, representation
of orthographic stimuli that might have been later “recycled” to
support orthographic processing behaviors in higher primates
such as humans.

Results
Tests of orthographic processing. Our primary goal was to
experimentally test the capacity of neural representations in the
primate ventral visual pathway to support orthographic classifi-
cation tasks. To do so, we recorded the activity of hundreds of
neurons from the top two levels of the ventral visual cortical
hierarchy of rhesus macaque monkeys. Neurophysiological
recordings were made in four Rhesus monkeys using chronically
implanted intracortical microelectrode arrays (Utah) implanted
in the inferior temporal (IT) cortex, the topmost stage of the
macaque ventral visual stream hierarchy. As a control, we also
collected data from upstream visual cortical area V4, which
provides the dominant input to IT (Fig. 1a). The majority of the
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Fig. 1 Conceptual schematic of experiment. a We recorded the activity of hundreds of neural sites in cortical area IT while monkeys passively viewed
images of orthographic stimuli. (As a control, we also recorded from the dominant input to IT, area V4.) We then tested the sufficiency of the IT
representation on 30 tests of orthographic processing (e.g., word classification, letter identification, etc.) using simple linear decoders. b Example visual
stimuli. Images consisted of four-letter English words and pseudoword strings presented in canonical views, as well as with variation in case (upper/lower)
and size (small/medium/large), and single letters presented at four different locations. c Responses of example IT neural sites. The approximate
anatomical locations of implanted arrays are shown on the left for each monkey. Example neural activity in response to stimuli are shown for eight example
neural sites in IT. Each trace corresponds to responses (mean over repetitions) to five example images chosen to illustrate the full range of evoked
response; the color of each trace corresponds to the response magnitude, and is not indicative of whether a string corresponded to a word or pseudoword.
Shaded areas correspond to SE of the mean response, over stimulus repetitions (n > 30 repetitions per image).
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collected neurophysiological data corresponded to multi-unit
spiking activity; hence we conservatively refer to these neural
samples as neural sites. Neuronal responses were measured while
each monkey passively viewed streams of images, consisting of
alphabet letters, English words, and pseudoword strings, pre-
sented in a rapid serial visual presentation (RSVP) protocol at the
center of gaze (Fig. 1). Crucially, monkeys had no previous
supervised experience with orthographic stimuli, and they were
not rewarded contingently on the stimuli, but solely for accurately
fixating. This experimental procedure resulted in a large dataset
of 510 IT neural sites (and 277 V4 neural sites) in response to up
to 1120 images of orthographic stimuli.

To test the sufficiency of the IT representation for orthographic
processing, we used simple linear decoders (as biologically
plausible approximations of downstream neural computations,
see Methods) to test each neuronal population on a battery of 30
visual orthographic processing tasks: 20 invariant letter identifi-
cation tasks, eight invariant bigram identification tasks, and two
variants of the word classification task. For each behavioral test,
we used a linear decoder, which computes a simple weighted sum
over the IT population activity, to discriminate between two
classes of stimuli (e.g., words versus pseudowords). The decoder
weights are learned using the IT population responses to a subset
of stimuli (using 90% of the stimuli for training), and then the
performance of the decoder is tested on held-out stimuli. The
overarching prediction of the “IT precursor” hypothesis was that,
if a putative neural mechanism (i.e., a particular readout of a
particular neural population) is sufficient for primate ortho-
graphic processing behaviors, then, it should be easy to learn (i.e.,
few supervised examples), its learned performance should match
the overall primate performance, and its learned performance
should have similar patterns of errors as primates that have
learned those same tasks. This logic has been previously applied
to the domain of core object recognition to uncover specific
neural linking hypotheses25 that have been successfully validated
with direct causal perturbation of neural activity26,27.

Word classification. We first focused on the visual discrimina-
tion of English words from pseudowords (word classification)
using a random subset of the stimuli tested on baboons17. We
collected the response of 510 IT neural sites and 277 V4 neural
sites to a base set of 308 four-letter written words and 308 four-
letter pseudowords (see Fig. 1b, base set for example stimuli).
Figure 1c shows the stimulus-locked response of eight example
neural sites in IT to five example strings chosen to illustrate the
full range of response highlighted (dark curves). Each neural site
was tested with all 616 stimuli in the base set, but each site’s
response to only five are shown. These examples illustrate that IT
sites reliably respond to letter strings above baseline, with greater
response to some strings over others.

To test the capacity of the IT neural representation to support
word classification, we trained a linear decoder using the IT
population responses to a subset of words and pseudowords, and
tested the performance of the decoder on held-out stimuli. This
task requires generalization of a learned classification to novel
orthographic stimuli, rather than the memorization of ortho-
graphic properties. Figure 2a shows the output choices of the
linear readout of IT neurons, plotted as the probability of
categorizing stimuli as words, as compared to behavioral choices
of a pool of six baboons, as previously measured by Grainger
et al.17. For ease of visualization, the 616 individual stimuli were
grouped into equally sized bins based on the baboon perfor-
mance, separately for words and pseudowords. We qualitatively
observe a tight correspondence between the behavioral choices
made by baboons and those measured by the linear decoder

trained on the IT population. To quantify this similarity, we
benchmarked both the overall performance (accuracy) and the
consistency of pattern of errors of the IT population with respect
to this previously measured median baboon behavior on the same
images.

We first found that decoders trained on the IT population
responses achieved high performance (76% for 510 neural sites)
on word classification on new images, with about 250 randomly
sampled IT neural sites matching the median performance of
baboons doing this task (Fig. 2b, blue). Could any neural
population achieve this performance? As a first control, we tested
the upstream cortical area V4. We found that the tested sample of
V4 neurons did not achieve high performance (57% for 277 V4
neural sites), failing to match baboon performance on this task
(Fig. 2b, green).

We next tested whether baboons and neural populations
exhibited similar behavioral patterns across stimuli, e.g., whether
letter strings that were difficult to categorize for baboons were
similarly difficult for these neural populations. To reliably
measure behavioral patterns in each individual baboon subject,
we grouped the 616 individual stimuli into equally sized bins
based on an independent criterion (the average bigram frequency
of each string in English, see Methods), separately for words and
pseudowords. For both baboons and decoders, we then estimated
the average unbiased performance for each stimulus bin using a
sensitivity index (d’); this resulted in a ten-dimensional pattern of
unbiased performances. We measured the similarity between
patterns from a tested neural population and the pool of baboons
using a noise-adjusted correlation (Methods). The pattern of
performances obtained from the IT population was highly
correlated with the corresponding baboon pool behavioral pattern
(noise-adjusted correlation ~ρ ¼ 0:64; Fig. 2c, blue). Could any
neural population exhibit baboon-like behavioral patterns? On
the contrary, we found that this correlation was significantly
higher than the corresponding value estimated from the V4
population, which is only one visual processing stage away from
IT (~ρ ¼ 0:11; Fig. 2c, green). By holding out data from each
baboon subject from the pool, we additionally estimated the
consistency between each individual baboon subject to the
remaining pool of baboons (median ~ρ ¼ 0:67, interquartile
range= 0.27, n= 6 baboon subjects). This consistency value
corresponds to an estimate of the ceiling of behavioral
consistency, accounting for intersubject variability. Importantly,
the consistency of IT-based decoders is within this baboon
behavioral range; this demonstrates that that this neural
mechanism is as consistent to the baboon pool as each individual
baboon is to the baboon pool, at this behavioral resolution.
Together, these results suggest that the distributed neural
representation in macaque IT cortex is sufficient to explain the
word classification behavior of baboons, which itself was
previously found to be correlated with human behavior on the
same four-letter strings17.

We next explored how the distributed IT population’s capacity
for supporting word classification arose from single neural sites.
Figure 2d shows the distribution of word selectivity of individual
sites in units of d’, with positive values corresponding to increased
firing rate response for words over pseudowords. Across the
population, IT did not show strong selectivity for words over
pseudowords (average d’= 0.008 ± 0.09, mean, SD over 510 IT
sites), and that no individual IT site was strongly selective for
words vs. pseudowords (|d’| < 0.5 for all recorded sites). However,
a small but significant proportion of sites (10%; p < 10−5,
binomial test with 5% probability of success) exhibited a weak
but significant selectivity for this contrast (inferred by a two-
tailed exact test with bootstrap resampling over stimuli).
This subset of neural sites includes both sites that responded
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preferentially to words and sites that responded preferentially to
pseudowords. We measured the word classification performance
of decoders trained on this subpopulation of neural sites,
compared to the remaining subpopulation. Importantly, to avoid
a selection bias in this procedure, we selected and tested neural
sites based on independent sets of data (disjoint split-halves over
trial repetitions). As shown in Fig. 2e, decoders trained on this
subset of selective neural sites performed better than a
corresponding sample from the remaining nonselective popula-
tion, but not as well as decoders trained on the entire population,
suggesting that the population’s capacity for supporting word
classification relies heavily but not exclusively on this small subset
of selective neural sites.

We next examined whether this subset of selective neural sites
was topographically organized on the cortical tissue. For this
subset of neural sites, we did not observe a significant
hemispheric bias (p= 0.13, binomial test with probability of
success matching our hemisphere sampling bias), or significant
spatial clustering within each 10 × 10 electrode array (Moran’s
I= 0.11, p= 0.70, see Methods). Thus, we observed no direct
evidence for topographically organized specialization (e.g.,
orthographic category-selective domains) in untrained non-
human primates, at the resolution of single neural sites. Taken
together, these results suggest that word classification behavior
could be supported by a sparse, distributed readout of the IT
representation in untrained monkeys, and provide a baseline
against which to compare future studies of trained monkeys.

Tests of invariant orthographic processing. Human readers can
not only discriminate between different orthographic objects, but
also do so with remarkable tolerance to variability in printed text.
For example, readers can effortlessly recognize letters and words
varying in up to two orders of magnitude in size, and are
remarkably tolerant to variations in printed font (e.g., upper vs
lower case)3,28. To investigate such invariant orthographic pro-
cessing behaviors, we measured IT-decoder performance for sti-
muli that vary in font size and font case, for a subsampled set of
strings (40 words, 40 pseudowords, under five different variations
for a total of 400 stimuli). We trained linear decoders on subsets
of stimuli across all variations, and tested on held-out stimuli, for
a total of 29 behavioral tests (20 invariant letter recognition tests,
8 invariant bigram recognition tests, and one test of invariant
word classification). Figure 3a shows the performance of a
decoder trained on the IT and V4 neuronal representations on
each of these three types of behavioral tests, as a function of the
neural sample size. The IT population achieved relatively high
performance across all tasks, and that this performance was
greater than the corresponding performance from the V4 popu-
lation. We note that performance values for invariant word
classification should not be directly compared with those in
Fig. 2b, as invariant tests here were conducted with fewer training
examples for the decoders.

We additionally tested the feature representation obtained
from a deep recurrent convolutional neural network model of the
ventral stream on the exact same behavioral tasks. Specifically, we
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tested the CORnet-S model29, as it is currently the best match to
the primate ventral visual stream30,31 and provides an indepen-
dently simulated estimate of the neuronal population responses
from each retinotopically defined cortical area in the ventral
visual hierarchy (V1, V2, V4, and IT). Figure 3 shows the
performance of decoders trained on each simulated neuronal
population on invariant letter identification, invariant bigram
identification, and invariant word classification, as a function of
the number of model units used for decoding. The last layer of

CORnet-S (simulated IT) significantly outperforms earlier layers
(simulated upstream areas V1, V2, and V4) on these invariant
orthographic discrimination tasks, and tightly matches the
performance of the actual IT population.

Next, we tested how the IT population’s capacity for these 29
invariant orthographic processing tests was distributed across
individual IT neural sites. We computed the selectivity of
individual sites in units of d’ for each of these tests, and
estimated the statistical significance of each selectivity index using
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a two-tailed exact test with bootstrap resampling over stimuli (see
Methods). Figure 3b shows a heatmap of significant selectivity
indices for all pairs of neural sites and behavioral tests; each row
corresponds to one behavioral test, each column to a single IT
neural site, and filled bins indicate statistically significant
selectivity. The histogram above shows the number of behavioral
tests that each neural site exhibited selectivity for (median: three
tests, interquartile range: 5), and the histogram on the right shows
the proportion of neural sites exhibiting selectivity for each test
(median: 49/337 neural sites, interquartile range: 23/337).

Finally, we tested whether the observed decoding performance
difference between IT and V4 could simply reflect the stimulus
size, such that V4 might outperform IT for smaller stimuli (e.g.,
because V4 neurons have smaller receptive fields than IT
neurons). Recall that our stimulus set contained images with
three letter sizes, where individual letters each spanned 0.8°, 1.2°,
or 1.6° of visual angle; these letter sizes partially covers the
“normal” range where human readers exhibit virtually no change
in reading abilities (0.2°–2°)32. Taking advantage of this, we
directly compared V4 and IT performance across all invariant
orthographic tests, separating by letter size. Figure 3c shows this
comparison, with most points above the unity line. The inset
shows the difference in performance between IT and V4 (with
positive values corresponding to IT > V4), for each letter size,
averaged across the 29 behavioral tests; the shaded region
corresponds to the “normal” range of letter sizes. IT populations
consistently outperform V4 across the tested range of stimulus
sizes, suggesting that the performance differences between IT and
V4 decode performance do not simply reflect stimulus size.

Taken together, these results suggest that sparse, distributed
read-outs of the adult IT representation of untrained non-human
primates are sufficient to support many visual discrimination
tasks, including ones in the domain of orthographic processing,
and that the neural mechanisms corresponding to these read-outs
could be learned with a small number of training examples
(median: 48 stimuli; interquartile range: 59, n= 30 behavioral
tests). Furthermore, this capacity is not captured by lower-level
representations, including neural samples from the dominant
visual input to IT (area V4) and low-level ventral stream
representations as approximated by state-of-the-art artificial
neural network models of the ventral stream.

Encoding of orthographic stimuli. The availability of IT neu-
ronal responses to orthographic stimuli allowed us to begin to
address the question of how such stimuli are encoded at the
single-neuron level. Behavioral and brain-imaging observations in
human readers have led to several proposals concerning the
putative neural mechanisms underlying human orthographic
abilities. For example, the local combination detector (LCD)
hypothesis posits a hierarchy of cortical representations whereby
neurons encode printed letter strings at increasing scale and
complexity, from tuning to simple edges and letters to inter-
mediate combinations of letters (e.g., letter bigrams) and finally to
complex words and morphemes over the cortical hierarchy2.
Other theories have proposed that letter position information is
encoded in the precise timing of spikes33,34. To date, it has been
difficult to directly test such hypotheses. Here, to help constrain
the space of encoding hypotheses, we characterized the response
properties of hundreds of individual IT neural sites to words and
to their component letters.

We first asked if individual IT neural sites exhibit any
selectivity for letters, i.e., if firing rates reliably differ for different
letters. To test this, we measured the selectivity of IT responses to
each of the 26 alphabet letters, each presented at four different
retinal positions. Figure 4a shows the “tuning curve” for three

example IT neural sites. Consistent with the known image
selectivity and position tolerance of IT neurons19,22,23, the
responses of these IT neural sites were significantly modulated
by both letter identity and letter position, with each example site
responding to some but not all individual letters.

We focused on 222 (out of 338) neural sites with reliable
response patterns across the single letter stimulus set (p < 0.01,
significant Pearson correlation across split-halves over repeti-
tions). Figure 4b (top) shows the average normalized response to
each of the 26 letters, across these 222 neural sites. For each
neural site, letters were sorted according to the site’s response
magnitude, estimated using half of the data (split-half of stimulus
repetitions) to ensure statistical independence; we then plotted
the sorted letter response measured on the remaining half
(individual sites in gray, mean ± SEM in black). Across the entire
population, some neural sites reliably respond more to some
letters than others, but this modulation is generally not selective
for one or a small number of letters. Rather, sites tended to
respond to a broad range of letters, as quantified by the sparsity of
letter responses (sparsity index SI= 0.24 ± 0.01; median ± stan-
dard error of median; Fig. 4b, bottom panel, black bars). To
provide references for this empirical SI distribution, we estimated
the corresponding SI distributions for two extreme simulated
hypotheses: whereby (1) neural sites respond equally to all letters
(uniform hypothesis), and (2) neural sites respond to only one
letter (one-hot hypothesis), obtained via random permutations of
our data (see Methods). As shown in Fig. 4b, the empirically
observed median sparsity was significantly greater than predicted
by the uniform hypothesis (p= 0.02, permutation test of median
distributions), and significantly less than expected by the one-hot
hypothesis (p < 0.0001, permutation test of median distributions).
We repeated this analysis for letter positions: individual sites were
also modulated by letter position (Fig. 4c, formatted as in Fig. 4b),
with a greater response to letters presented contralateral to the
recording site, while also exhibiting substantial tolerance across
positions. The empirically observed distribution of sparsity of
responses across positions (SI= 0.52 ± 0.02; median ± standard
error of median) was significantly different from both simulated
uniform and one-hot hypotheses (p < 0.0001, permutation test of
median distributions).

Next, we asked whether the encoding of letter strings could be
approximated as a sum of responses to individual letters. To test
this, we linearly regressed each site’s response to letter strings on
the responses to the corresponding individual letters at the
corresponding position, cross-validating over letter strings. Using
the neural responses to all four letters, the predicted responses of
such a linear reconstruction were modestly correlated with the
measured responses to letter strings (see Fig. 4d, rightmost
distribution; ~ρ ¼ 0:29 ± 0:06, median ± standard error of median,
n= 222 neural sites). To investigate if this explanatory power
arose from all four letters, or whether 4-letter string responses
could be explained just as well by a substring of letters, we trained
and tested linear regressions using responses to only some (1, 2,
or 3) letters. Given that there are many possible combinations for
each, we selected the best such mapping from the training data,
ensuring that selection and testing were statistically independent.
Reconstructions using only some of the letters were poorer than
those using all four letters in predicting letter string responses
(three letters: ~ρ ¼ 0:12 ± 0:02, median ± standard error of med-
ian), and this difference was statistically significant (p= 0.002,
one-tailed exact test on distributions of medians obtained by
bootstrap resampling over neural sites). Finally, we tested how
well a position-agnostic (or “bag of letters”) model performed on
the same reconstruction task by trained and test linear regressions
that mapped responses of letters, with the incorrect position
(using a fixed, random shuffling of letter positions) on
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reconstructing the responses to whole letter strings. We found
that this “bag of letters” model performed significantly worse
(~ρ ¼ 0:11 ± 0:02, median ± standard error of median, p= 0.0004,
one-tailed exact test on distributions of medians obtained by
bootstrap resampling over neural sites).

All correlation values reported above were adjusted to account
for the reliability of measured neural responses, such that a fully
predictive model would have a distribution of estimated noise-
adjusted correlations overlapping with 1.0 regardless of the finite
amount of data that were collected. Yet, across all tested neural
sites, the maximal value of ~ρ ¼ 0:29 that we obtained using the
linear superposition of position-specific responses to the four
letters was substantially lower than 1.0. Thus, the pure
summation of neural responses to individual letter identity and
position explained only a small part of the reliable neural
responses to four-letter strings, suggesting that nonlinear
responses to local combinations of letters were also present.
Future work using stimuli comprising a larger number of letter
combinations can explore to what extent IT neural sites respond,
for instance, to specific letter bigrams, as predicted by some
models2,35, or to other complex invariant visual features.

Mirror-symmetric tuning. We next examined the response
patterns of each IT site across different letter stimuli. Prior
neurophysiological work has shown that a small proportion of
neurons in IT exhibit “mirror-symmetric” tuning36–38, i.e.,
respond similarly to stimuli that are horizontal mirror images of
one another, but not to corresponding vertical mirror-image
pairs. This phenomenon has been hypothesized to underlie the
left-right inversion errors of children learning to read, but has
not been directly tested. In light of this, we sought to test whether
the output patterns of decoders trained on the recorded IT

population exhibited any evidence of mirror symmetry in
response to orthographic stimuli. Figure 5a outlines the logic of
our analysis: if the left-right inversion errors of early readers is
due in part to the high-level visual representation of letters, then
we should find IT population decodes to be more similar (i.e.,
more likely to be confused) for pairs of letters that have high
horizontal reflectivity (e.g., b and d), compared to pairs of letter
than have high vertical reflectivity (e.g., b and p). To test this, we
quantified the amount of horizontal and vertical reflectivity, RH
and RH, respectively, between all 325 pairs of letters in our sti-
mulus set (see Methods). Next, we measured the similarity rIT of
this stimulus pair with respect to an IT-based decoder as the
Pearson correlation between the corresponding decoder outputs
(see Methods). Finally, across many such stimulus pairs, we relate
the relative horizontal reflectivity ΔR= RH− RV to the IT-
decoder similarity rIT (Fig. 5a, bottom). If IT-based decoders
exhibit a tendency toward (horizontal) “mirror symmetric” con-
fusion, we expect rIT to be greater for positive ΔR than for
negative ΔR (see Fig. 5a, bottom panel, red curve). Alternatively,
we expect no dependence of rIT on ΔR (see Fig. 5a, bottom panel,
gray curve).

While our stimulus set did not include any image pairs that are
perfect horizontal or vertical mirror-images images of one
another, we nevertheless attempted to relate the similarity in IT
of specific stimulus pairs to their empirical pixel-level reflectivity.
Figure 5b shows the distributions of ΔR= RH− RV over 325
unique pairs of letters in our stimulus (gray dots), with nine
example stimulus pairs (red dots) selected to illustrate the entire
range. ΔR is large for pairs of approximately horizontally
symmetric letters (J and L), but not pairs with overall pixel
overlap (e.g., C and Q) or pairs of approximately vertically
symmetric letters (e.g., A and V). Importantly, we did not
consider identity pairs (a letter and itself) to avoid inflating our
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results by bias in horizontal symmetry present in alphabet letters
(see Methods). Figure 5c shows the dependence of the IT-decoder
representational similarity rIT to the empirically measured ΔR
overall 325 unique pairs of letters. The smooth blue line shows
the rolling average overall 325 letter pairs, averaging over a
boxcar window of five letter pairs. To obtain summary statistics
from these data, we binned ΔR into three bins spanning equal ΔR
sizes. We observed a positive average rIT for the rightmost bin
(rIT= 0.11 ± 0.04, p= 0.01; one-tailed t-test), but not for the left-
most bin (rIT=−0.03 ± 0.05, p= 0.30; one-tailed t-test); the
difference between these two measurements was modest but
significant (p= 0.025, unpaired one-tailed two-sample t-test).
These results provide modest evidence that a readout of the IT
representation of letters is consistent with previously reported
left-right mirror symmetry, and suggest that a targeted experi-
ment designed to directly test this hypothesis is warranted.

Taken together, these observations demonstrate that individual
IT neural sites in untrained non-human primates, while failing to
exhibit strong orthographic specialization, collectively suffice to
support a battery of orthographic tasks. Importantly, these
observations establish a number of relevant quantitative baselines,
a preregistered benchmark to which future studies of the ventral
stream representations in monkeys trained on orthographic
discriminations, or in literate humans, could be directly
compared to.

Discussion
A key goal of human cognitive neuroscience is to understand how
the human brain supports the ability to learn to recognize written
letters and words. This question has been investigated for several
decades using human neuroimaging techniques, yielding putative
brain regions that may uniquely underlie orthographic abilities7–9.
In the work presented here, we sought to investigate this issue in
the primate ventral visual stream of naïve rhesus macaque mon-
keys. Non-human primates such as rhesus macaque monkeys have
been essential to study the neuronal mechanisms underlying
human visual processing, especially in the domain of object
recognition where monkeys and humans exhibit remarkably

similar behavior and underlying brain mechanisms, both neu-
roanatomical and functional13–16,39,40. Given this strong homol-
ogy, and the relative recency of reading abilities in the human
species, we reasoned that the high-level visual representations in
the primate ventral visual stream could serve as a precursor that is
recycled by developmental experience for human orthographic
processing abilities. In other words, we hypothesized that the
neural representations that directly underlie human orthographic
processing abilities are strongly constrained by the prior evolution
of the primate visual cortex, such that representations present in
naïve, illiterate, non-human primates could be minimally adapted
to support orthographic processing. Here, we observed that
orthographic information was explicitly encoded in sampled
populations of spatially distributed IT neurons in naïve, illiterate,
non-human primates. Our results are consistent with the
hypothesis that the population of IT neurons in each subject forms
an explicit (i.e., linearly separable, as per ref. 21) representation of
orthographic objects, and could serve as a common substrate for
learning many visual discrimination tasks, including ones in the
domain of orthographic processing.

We tested a battery of 30 orthographic tests, focusing on a
word classification task (separating English words from pseudo-
words). This task is referred to as “lexical decision” when tested
on literate subjects recognizing previously learned words (i.e.,
when referencing a learned lexicon). For nonliterate subjects (e.g.,
baboons or untrained IT decoders), word classification is the
ability to identify orthographic features that distinguish between
words and pseudowords and generalize to novel strings. This
generalization must rely on specific visual features whose dis-
tribution differs between words and pseudowords; previous work
suggests that such features may correspond to specific bigrams17,
position-specific letter combinations41, or distributed visual fea-
tures42. While this battery of tasks is not an exhaustive char-
acterization of orthographic processing, we found that it has the
power to distinguish between alternative hypotheses. Indeed,
these tasks could not be accurately performed by linear readout
decoders of the predominant input visual representation to IT
(area V4) or by approximations of lower levels of the ventral
visual stream, unlike many other coarse discrimination tasks
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(e.g., contrasting orthographic and nonorthographic stimuli). We
note that the successful classifications from IT-based decoders do
not necessarily imply that the brain exclusively uses IT or the
same coding schemes and algorithms that we have used for
decoding. Rather, the existence of this sufficient code in untrained
and illiterate non-human primates suggests that the primate
ventral visual stream could be minimally adapted through
experience-dependent plasticity to support orthographic proces-
sing behaviors.

These results are consistent with a variant of the “neuronal
recycling” theory, which posits that the features that support
visual object recognition may have been coopted for written word
recognition5,6,24. Specifically, this variant of the theory is that
humans have inherited a pre-existing brain system (here, the
ventral visual stream) from recent evolutionary ancestors, and
they either inherited or evolved learning mechanisms that enable
individuals to adapt the outputs of that system during their
lifespan for word recognition and other core aspects of ortho-
graphic processing. Consistent with this, our results suggest that
prereading children likely have a neural population representa-
tion that can readily be reused to learn invariant word recogni-
tion. Relatedly, it has been previously proposed that the initial
properties of this system may explain the child’s early competence
and errors in letter recognition, e.g., explaining why children tend
to make left-right inversion errors by the finding that IT neurons
tend to respond similarly to horizontal mirror images of
objects36,37,43. Consistent with this, we here found that the
representation of IT-based decoders exhibited a similar signature
of left-right mirror symmetry. According to this proposal, this
neural representation would become progressively shaped to
support written word recognition in a specific script over the
course of reading acquisition, and may also explain why all
human writing systems throughout the world rely on a universal
repertoire of basic shapes24. As shown in the present work, those
visual features are already well encoded in the ventral visual
pathway of illiterate primates, and may bias cultural evolution by
determining which scripts are more easily recognizable and
learnable.

A similar “neuronal recycling hypothesis” has been proposed
for the number system: all primates may have inherited a pre-
existing brain system (in the intraparietal sulcus) in which
approximate number and other quantitative information is well
encoded44,45. It has been suggested that these existing repre-
sentations of numerosity may be adapted to support exact,
symbolic arithmetic, and may bias the cultural evolution of
numerical symbols6,46. Likewise, such representations have been
found to spontaneously emerge in neural network models opti-
mized for other visual functions47. Critically, the term “recycling,”
in the narrow sense in which it was introduced, refers to such
adaptations of neural mechanisms evolved for evolutionary older
functions to support newer cultural functions, where the original
function is not entirely lost and the underlying neural function-
ality constrains what the brain can most easily learn. It remains to
be seen whether all instances of developmental plasticity meet this
definition, or whether learning may also simply replace unused
functions without recycling them48.

In addition to testing a prediction of this neuronal recycling
hypothesis, we also explored the question of how orthographic
stimuli are encoded in IT neurons. Decades of research has
shown that IT neurons exhibit selectivity for complex visual
features with remarkable tolerance to changes in viewing condi-
tions (e.g., position, scale, and pose)19,22,23. More recent work
demonstrates that the encoding properties of IT neurons, in both
humans and monkeys, is best explained by the distributed com-
plex invariant visual features of hierarchical convolutional neural
network models30,49,50. Consistent with this prior work, we here

found that the firing rate responses of individual neural sites in
macaque IT was modulated by, but did not exhibit strong
selectivity to orthographic properties, such as letters and letter
positions. In other words, we did not observe precise tuning as
postulated by “letter detector” neurons, but instead coarse tuning
for both letter identity and position. It is possible that, over the
course of learning to read, experience-dependent plasticity could
fine-tune the representation of IT to reflect the statistics of
printed words (e.g., single-neuron tuning for individual letters or
bigrams). Moreover, such experience could alter the topographic
organization to exhibit millimeter-scale spatial clusters that pre-
ferentially respond to orthographic stimuli, as have been shown
in juvenile animals in the context of symbol and face recognition
behaviors18,51. Together, such putative representational and
topographic changes could induce a reorientation of cortical
maps towards letters at the expense of other visual object cate-
gories, eventually resulting in the specialization observed in the
human visual word form area (VWFA). However, our results
demonstrate that, even prior to such putative changes, the initial
state of IT in untrained monkeys has the capacity to support
many learned orthographic discriminations.

In summary, we found that the neural population representa-
tion in IT cortex in untrained macaque monkeys is largely able,
with some supervised instruction, to extract explicit representa-
tions of written letters and words. This did not have to be so—the
visual representations that underlie orthographic processing
could instead be largely determined over postnatal development
by the experience of learning to read. In that case, the IT repre-
sentation measured in untrained monkeys (or even in illiterate
humans) would likely not exhibit the ability to act as a precursor
of orthographic processing. Likewise, orthographic processing
abilities could have been critically dependent on other brain
regions, such as speech and linguistic representations, or putative
flexible domain-general learning systems, that evolved well after
the evolutionary divergence of humans and Old-World monkeys.
Instead, we here report evidence for a precursor of orthographic
processing in untrained monkeys. This finding is consistent with
the hypothesis that learning rests on pre-existing neural repre-
sentations which it only partially reshapes.

Methods
Subjects. The non-human subjects in our experiments were four adult male rhesus
macaque monkeys (Macaca mulatta, subjects N, B, S, M). Surgical procedures,
behavioral training, and neural data collection are described in detail below. All
procedures were performed in compliance with the guideline of National Institutes
of Health and the American Physiological Society, and approved by the MIT
Committee on Animal Care.

Visual īmages. We randomly subsampled 616 strings (308 words, 308 pseudo-
words) from the stimulus set used to test orthographic processing abilities in
baboons by Grainger et al. Word strings consisted of four-letter English words,
whereas pseudoword strings consisted of nonsense combinations of four letters,
with one vowel and three consonant letters. The entire set of pseudowords con-
tained bigrams that ranged from those that are very common in the English lan-
guage (e.g., TH) to those that are very uncommon (e.g., FQ), as quantified by a
broad distribution of English bigram frequency (median= 95, interquartile range
= 1366; in units of count per million). As such, given the previously established
link between bigram frequency and difficulty in word classification17, orthographic
stimuli spanned a range of difficulties for the word vs pseudoword word classifi-
cation task. From these 616 strings, we then generated images of these strings
under different variations of generative parameters in font size (small/medium/
large size) and font case (upper/lower case), fixing the font type (monotype), color
(yellow), thus creating a total of 3696 images. We additionally generated images of
individual alphabet letters at each of the possibly locations (26 letters × 4 loca-
tions × 6 variations in font case/size). We measured IT and V4 responses from
passively fixating rhesus macaque monkeys (see below) for a subset of 1120 images
from this stimulus set, and used previously measured behavior from trained
baboons from the study by Grainger and colleagues17. Visual images were pre-
sented to span 8° of visual angle, matching our prior neurophysiological experi-
ments. For small, medium and large stimulus variations, each individual letter
spanned approximately 0.8°, 1.2°, and 1.6° of visual angle, and each four-letter
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string spanned 3.2°, 4.8°, and 6.4° of visual angle (i.e., the spacing between letters
was proportional to the letter sizes themselves). Such letter sizes are within the
range of 0.2°–2° where human readers exhibit virtually no change in reading
abilities32. We did not test even smaller letter sizes, due to difficulties in measuring
reliable neurophysiological signals with subdegree precision in awake and behaving
monkeys (or humans), given the variability in gaze fixation, fixational eye move-
ments, and gaze tracking.

Baboon behavior. Baboon behavioral data from six guinea baboons performing a
word classification task was obtained from prior work17. We focused our analysis
on the aforementioned subsampled stimulus set (616 strings).

Surgical implant of chronic microelectrode arrays. We surgically implanted each
monkey with a head post under aseptic conditions. After behavioral training, we
implanted multiple 10 × 10 microelectrode arrays (Utah arrays; Blackrock Micro-
systems) in V4 and IT cortex of each monkey. A total of 96 electrodes were
connected per array. Each electrode was 1.5 mm long and the distance between
adjacent electrodes was 400 μm. Array placements were guided by the sulcus
pattern, which was visible during surgery. Approximate array locations for each
monkey are shown in Fig. 1c. The electrodes were accessed through a percutaneous
connector that allowed simultaneous recording from all 96 electrodes from each
array. All behavioral training and testing were performed using standard operant
conditioning (fluid reward), head stabilization, and real-time video eye tracking.

Eye tracking. We monitored eye movements using video eye tracking
(SR Research EyeLink 1000). Using operant conditioning and water reward, our
subjects were trained to fixate a central white square (0.2°) within a square fixation
window that ranged from ±2°. At the start of each behavioral session, monkeys
performed an eye-tracking calibration task by making a saccade to a range of
spatial targets and maintaining fixation for 500 ms. Calibration was repeated if drift
was noticed over the course of the session.

Electrophysiological recording. During each recording session, band-pass filtered
(0.1 Hz–10 kHz) neural activity was recorded continuously at a sampling rate of 20
kHz using Intan Recording Controller (Intan Technologies, LLC). The majority of
the data presented here were based on multi-unit activity, hence we refer to neural
sites. We detected the multi-unit spikes after the raw data were collected. A multi-
unit spike event was defined as the threshold crossing when voltage (falling edge)
deviated by less than three times the standard deviation of the raw voltage values.
In this manner, we collected neural data from macaque V4 and IT from four male
adult monkeys (N, B, S, M, weighing between 7 and 10 kg) in a piecewise manner.
We focused our analyses on neural sites that exhibited significant visual drive
(determined by p < 0.001 comparing baseline activity to visually driven activity);
this resulted in 510 IT neural sites and 277 V4 neural sites. Our array placements
allowed us to sample neural sites from different parts of IT, along the posterior to
anterior axis. However, we did not consider the specific spatial location of the site,
and treated each site as a random sample from a pooled IT population. For each
neural site, we estimated the repetition-averaged firing rate response in two tem-
poral windows (70–170 ms and 170–270 ms after stimulus onset) and concatenated
these firing rates for decoding analyses. Single-unit analyses focused on the 70–170
ms time interval.

Linear decoders. To test the capacity of ventral stream neural representations to
support orthographic processing tasks, we used linear decoders to discriminate
between two classes of stimuli (e.g., words versus pseudowords) using the firing
rate responses of neural populations. We used binary logistic regression classifiers
with ten-fold cross-validation: decoder weights were learned using the neural
population responses to 90% of stimuli and then the performance of the decoder is
tested on held-out 10% of stimuli, repeating 10 times to test each stimulus. We
repeated this process 10 times with random sampling of neurons. This procedure
produces an output class probability for each tested stimulus, and we took the
maximum of those as the behavioral choice of the decoded neural population. We
use such linear classifier as simple biologically plausible models of downstream
neuronal computations. Indeed, the trained linear decoder perform binary classi-
fications by computing weighted sums of IT responses followed by a decision
boundary, analogous to synaptic strengths and spiking thresholds of neurons
downstream of IT.

Deep neural network model behavior. We additionally tested a deep neural
network model of the primate ventral stream on the exact same images and tasks.
We used CORnet-S, a deep recurrent convolutional neural network model that has
recently been shown to best match the computations of the primate ventral visual
stream29,31. CORnet-S approximates the hierarchical structure of the ventral
stream, with four areas each mapped to the four retinotopically defined cortical
area in the ventral visual hierarchy (V1, V2, V4, and IT). To do so, we first
extracted features from each CORnet-S layer on the same images. As with neural
features, we trained back-end binary logistic regression classifiers to determine the
ten-fold cross-validated output class probability for each image and for each label.

Behavioral metrics. For each behavioral test, we measured the average unbiased

performance (or balanced accuracy) as acc ¼ HRþð1�FARÞ
2 , where HR and FAR

correspond to the hit-rate and false-alarm-rate across all stimuli.
For the word classification task, we additionally estimated behavioral patterns

across stimuli. To reliably measure behavioral patterns in each individual baboon
subject, we grouped the 616 individual stimuli into ten equally sized bins separately
for words and pseudowords; bins were defined based on the average bigram
frequency of each string in English. We then estimated the average unbiased
performance for each stimulus bin using a sensitivity index: d′=Z(HR)−Z(FAR)52,
where HR and FAR correspond to the hit-rate and false-alarm-rate across all stimuli
within the bin. Across stimulus bins, this resulted in a ten-dimensional pattern of
unbiased performances.

Behavioral consistency. To quantify the behavioral similarity between baboons
and candidate visual systems (both neural and artificial) with respect to the pattern
of unbiased performance described above, we used a measure called consistency (~ρ)
as previously defined53, computed as a noise-adjusted correlation of behavioral
signatures54. For each system, we randomly split all behavioral trials into two equal
halves and estimated the pattern of unbiased performance on each half, resulting in
two independent estimates of the system’s behavioral signature. We took the
Pearson correlation between these two estimates of the behavioral signature as a
measure of the reliability of that behavioral signature given the amount of data
collected, i.e., the split-half internal reliability. To estimate the consistency, we
computed the Pearson correlation overall the independent estimates of the beha-
vioral signature from the model (m) and the primate (p), and we then divide that
raw Pearson correlation by the geometric mean of the split-half internal reliability

of the same behavioral signature measured for each system: ~ρðm; pÞ ¼ ρðm;pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðm;mÞρðp;pÞ
p .

Since all correlations in the numerator and denominator were computed using the
same number of trials, we did not need to make use of any prediction formulas
(e.g., extrapolation to larger number of trials using Spearman–Brown prediction
formula). This procedure was repeated 10 times with different random split-halves
of trials. Our rationale for using a reliability-adjusted correlation measure for
consistency was to account for variance in the behavioral signatures that is not
replicable by the experimental condition (image and task).

Single-neuron analyses. For each neural site, we estimated the selectivity with
respect to a number of contrasts (e.g., word vs pseudoword) using a sensitivity
index: d0x;y ¼

μx�μy
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ðσ2xþσ2y Þ

p 52. We obtained uncertainty estimates for single-neuron

selectivity indices by bootstrap resampling over stimuli, and inferred statistical
significance using two-tailed exact tests on the bootstrapped distributions.

We determined whether neural sites that exhibited significant selectivity for
word classifications were topographically organized across the cortical tissue using
Moran’s I55, a metric of spatial autocorrelation. We compared the empirically
measured autocorrelation (averaged over six-electrode arrays) to the corresponding
distributions expected by chance, obtained by shuffling each electrode’s selectivity
100 times.

We quantified the sparsity of neural responses to letter identity and position

using a sparsity index SI56 as follows: A xð Þ ¼ E½x�2
E½x2 �, SI xð Þ ¼ 1�AðxÞ

1�1=N , where E[.]

denotes the expectation of, and N is the length of the vector x. In the absence of
measurement noise, the SI has a value of 0 for a perfectly uniform response pattern,
and a value of 1 for a perfectly one-hot response pattern. However, to estimate the
expected SI values for uniform and one-hot conditions in the presence of
measurement noise, we performed the following simulation. To simulate the
uniform condition, we randomly shuffled the stimulus category on each stimulus
repetition, and averaged this shuffled response vector across repetitions. This
procedure estimates the expected repetition-average response for a neuron that
responds uniformly across all stimuli, while fixing the variability across repetitions.
To simulate the one-hot condition, we used half of the repetitions to infer the top
responsive stimulus category, and shuffled all this stimulus category on the second
split-half of the data. Averaging this across split-halves, we obtained the expected
repetition-averaged one-hot response, fixing the variability across repetitions.

Mirror-symmetry analyses. We quantified the horizontal and vertical reflectivity
(RH, RV) of different letter pairs using a pixel overlap metric, defined as the ratio of
intersection and union of pixels between two letters. Specifically, we measured the
pixel overlap after applying a horizontal (or vertical) reflection on one letter (about
the center of its bounding box to measure the amount of horizontal (or vertical)
mirror symmetry. For each letter pair, we then estimated the difference ΔR= RH−
RV. We observed that the set of 26 alphabet letters are biased to have high ΔR, i.e.,
most alphabet letters are more horizontally symmetric than vertically symmetric to
themselves. Given this bias, we did not include identity pairs (a letter and itself) in
our analyses to avoid inflating the evidence for horizontal mirror symmetry. To
measure the similarity of each stimulus pair with respect to IT-based decoders, we
trained a multinomial logistic regression decoder on the IT population to identify
individual letters, and used this learned decoder to map the IT representation into a
26-dimensional representation (with one dimension for each of the 26 alphabet
letters). We measured the IT-decoder similarity for each pair of letter images via a
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Pearson correlation of the two 26-dimensional vectors corresponding to the pair at
one position, and then averaged the similarity over the four possible positions,
resulting in a pattern of IT-decoder similarity overall 325 unique pairs of letters
(termed rIT).

Data availability
The images used in this study and the behavioral and neural data will be available from a
public repository (https://github.com/brain-score/brainio_collection).

Code availability
The code to generate the associated figures will be available on a public GitHub
repository (https://github.com/RishiRajalingham/NatureComms2020).
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