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Abstract: Acoustic, lexical and syntactic information is simultaneously processed in the brain. 25 

Therefore, distinguishing the electrophysiological activity pertaining to these components requires 26 

complex and indirect strategies. Capitalizing on previous works which factor out acoustic information, 27 

we could concentrate on the lexical and syntactic contribution to language processing by testing 28 

competing statistical models. We exploited EEG recordings and compared different surprisal models 29 

selectively involving lexical information, part of speech or syntactic structures in various combinations. 30 

EEG responses were recorded in 32 participants during listening to affirmative active declarative 31 

sentences and compared the activation corresponding to basic syntactic structures, such as noun phrases 32 

vs verb phrases. Lexical and syntactic processing activates different frequency bands, different time 33 

windows and different networks. Moreover, surprisal models based on part of speech inventory only do 34 

not explain well the electrophysiological data, while those including syntactic information do. Finally, we 35 

confirm previous measures obtained with intracortical recordings independently supporting the original 36 

hypothesis addressed here in a robust way. 37 

 38 
   39 
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Introduction 41 

During sentence comprehension, syntactic information is crucially intertwined with acoustic 42 

information [1], [2], [3]. This makes it difficult to decouple neural syntactic processing from other types 43 

of language processing, particularly  in electrophysiological studies [1], [2]. To address this problem, we 44 

previously designed a set of stimuli composed of sentences containing homophonous parts [4]. These 45 

homophonous parts have the same acoustic content but different syntactic structures, i.e., they could be 46 

either noun phrases (NPs – article + noun) or verb phrases (VPs – clitic (pronoun) + verb). This was 47 

made possible by exploiting three characteristics of the Italian language: (i) some definite articles are 48 

pronounced exactly like some object clitic pronouns (such as [la] written as la; it can be both “the - 49 

fem.sing.” or “her - fem.sing.”); (ii) the syntax of articles and clitic pronouns is very different: they both 50 

precede the noun/verb, but usually complements follow verbs. The operation of placing a pronoun 51 

before the verb is called cliticization [5]. The placement of the clitic pronoun before the verb has been 52 

taken to implicate a complex syntactic operation, which is absent in NPs. And (iii) the Italian lexicon 53 

contains several homophonous pairs of nouns and verbs, such as [ˈpɔrta] (written porta), which can either 54 

mean “door” or “brings”. Pairs of words such as [laˈpɔrta] (written as la porta) can thus be interpreted 55 

either as a noun phrase (“the door”) or a verb phrase (“brings her”) depending on the syntactic context 56 

(homophonous phrases - HPs). 57 

In our previous works [4], [6], we compared the brain activity elicited by the processing of noun 58 

phrases or verb phrases, using stereo-electroencephalographic (SEEG) recordings. We found that the 59 

frequencies in the high-gamma band (150-300 Hz) were the main neural correlate of syntactic processing. 60 

We also observed a higher number of responsive contacts for VPs than for NPs, with the neural network 61 

supporting the processing of VPs being wider than the network processing NPs, and involving more 62 

cortical and subcortical areas, especially in the right (non-dominant) hemisphere.  63 

A potential interpretation of these results comes from the notion of surprisal. Surprisal is defined 64 

as the negative log probability of a word in a context, which yields an inverse relationship between a 65 
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word’s probability and its surprisal value [7]: the rarer a word is in a given context, the higher the surprisal. 66 

Surprisal is known to be positively correlated with brain activity [8]. 67 

Computing a surprisal value depends on the way in which a word’s probability is determined, i.e., 68 

what kind of language model is used. There are two dimensions in which language probability models 69 

can vary: (i) whether they make use of sequential information vs. hierarchical structure, and (ii) whether 70 

they predict word or parts-of-speech (POS). In [9], we showed that models of surprisal that only 71 

incorporate sequential information, whether of words or POS, fail to account for subtle distinctions in 72 

linguistic patterns.. The surprisal model that performed better in distinguishing the stimuli and replicating 73 

the expectation associated with the syntactic structure of a sentence was the one that considered 74 

hierarchical dependencies to predict the POS of the sentences, i.e., the syntactic surprisal. The hierarchical 75 

model that predicted individual words, i.e., the lexical surprisal, failed at replicating the same result. In 76 

[9], we concluded that surprisal models must therefore incorporate syntactic structure to mirror human 77 

listeners’ linguistic competence. 78 

To evaluate whether syntactic surprisal modulations are similarly mirrored in brain data and provide 79 

an electrophysiological analysis of the theoretical conclusions reached in [9], in this paper, we used a new 80 

set of auditory stimuli containing homophonous sentences. In this new set of stimuli, the predictability 81 

of the syntactic content of the homophonous phrase is considered, allowing us to produce a high number 82 

of analytical contrasts among stimuli features (predictability, homophonous phrase type, and surprisal), 83 

to refine the knowledge of how syntactic information is processed in our brain, and how this neural 84 

processing is linked to the lexical and the syntactic surprisal. 85 

We presented this new set of auditory stimuli to 32 healthy participants while recording their 86 

electroencephalographic (EEG) signal. We anticipate investigating into the correlation between various 87 

surprisal models and the syntactic modulation of our stimuli. We expect that each type of surprisal model 88 

has an influence on brain activity, even though in distinct manners and locations. We hypothesize that 89 

surprisal models incorporating both syntactic and morphological information will exhibit greater accuracy 90 
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in discerning the neural activity associated with syntactic processing. This anticipation arises from our 91 

observation, supported by mathematical models, that these models uniquely discriminate our stimuli 92 

based on predictability [9]. Furthermore, we expect the temporal dynamics of the neural activity 93 

divergence between NPs and VPs to be highly affected by the predictability of the syntactic structure. 94 

Finally, we aim to replicate our prior findings using SEEG and a simplified set of stimuli, eliminating 95 

consideration for the predictability of syntactic structure [4], [6]. This comprehensive exploration 96 

promises to deepen our understanding of the electrophysiological correlates of syntactic processing. 97 

 98 

Methods 99 

Stimuli 100 

To modulate the relation between the syntactic and surprisal information we crucially relied on the 101 

paradigm introduced in Greco et al. 2023 [9]. More specifically, three experimental conditions have been 102 

generated here by modulating the syntactic context preceding the HPs, which predicts the syntactic type 103 

of the HPs:  104 

 Unpredictable HPs (Unpred.): the syntactic context preceding HPs is an adverb. Thus, the syntactic 105 

category of the HP is not predictable as the context allows both NPs and VPs. The syntactic category 106 

of the HP becomes discernible only after the HP: if it is followed by a verb, it is a NP (such as in 107 

Forse la porta è aperta, ‘Maybe the door is open’): otherwise, it is very likely a VP (Forse la porta a 108 

casa, ‘Maybe s/he brings it at home’). No differences will exist in the lexical surprisal values at the 109 

two HPs because the context preceding the HP is the same for both syntactic categories.  110 

 Strongly predictable HPs (S. Pred.): the syntactic type of the HP is predictable at its onset. If the 111 

syntactic context preceding the HP is a verb the HP can only be a NP (such as in Pulisce la porta con 112 

l’acqua, ‘S/he cleans the door with water’). If the HP is preceded by a noun, it can only be a VP (La 113 

donna la porta domani, ‘The woman brings her tomorrow’). Our previous works [4], [6] exploited only 114 
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this type of stimuli. The different lexical context preceding NPs and VPs allows for different lexical 115 

surprisal values. 116 

 Weakly predictable HPs (W. Pred.): this is the mixed class. The sentences are introduced by a 117 

temporal adverb requiring a past tense (e.g., Yesterday). Thus, the first word of the HP (la) could either 118 

be an article (‘the’) or a clitic pronoun (‘her’), as in the Unpred. case; while the second word of the 119 

HP (porta) can only be a noun (‘door’), since the verbal form of the VP would involve a present tense 120 

verb ([s/he] ‘brings’) that is incompatible with the temporal adverb requiring a past tense (i.e. 121 

yesterday). An example stimulus is: Ieri la porta era aperta, ‘Yesterday the door was opened). Using 122 

this structure, in Italian, W. Pred. VP sentences are impossible, and thus W. Pred. HPs could only be 123 

NPs. 124 

A total of 150 trials were prepared: 60 for Unpred. HPs, 30 NPs and 30 VPs, 60 for S. pred. HPs, 30 125 

NPs and 30 VPs, and 30 for W. pred. HPs, only NPs since there cannot be VPs of this type. 126 

Surprisal calculation 127 

Surprisal calculation is based upon on language probability models. Briefly, language probability models 128 

can be distinguished along two dimensions [9]: 129 

 Structure: (i) Linear models (which we will instantiate as n-gram models) view language as an 130 

unstructured sequence. In such a model, the probability of an element determined by the linear 131 

sequence of n elements before it, and the probability of the entire sequence is the product of the 132 

individual elements.  (ii) Hierarchical models (which we will instantiate as PCFGs), assume 133 

language is structured hierarchically, following Chomsky (1957) [11], so that probabilities are 134 

assigned to each element on the basis of the structural configuration it occurs, which can 135 

potentially span linearly unbounded distances.  136 

 Prediction: (i) Word models predict individual words' probabilities. (ii) Category models predict 137 

POS categories' probabilities. Both can be easily computed using n-gram models. Roark et al. 138 

(2009) [10] show how word and category predictions can be separated in a hierarchical model, 139 
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and we use their techniques to calculate syntactic surprisal for categories and lexical surprisal for 140 

words. 141 

For subsequent analysis, we use only the surprisal values associated with the article (if NP) or clitic 142 

(if VP) of the HPs. As already demonstrated in [4, 6], this is the word for which the lexical surprisal 143 

difference between NPs and VPs is maximal for S. Pred. items.  144 

Human participants and EEG recordings 145 

In total, 32 right-handed Italian native speakers were recruited (16 males and 16 females; median 146 

age 27, range 24-54). All participants retained the right to withdraw from the study at any time and 147 

received a small monetary compensation for their participation. They had no history of neurological or 148 

psychiatric conditions, normal hearing, normal or corrected vision, and no reported history of drug or 149 

alcohol abuse. All participants completed all experimental sessions. EEG recordings were carried out in 150 

a sound-isolation booth using a 65-channel HydroCel Geodesic Sensor Net (Electrical Geodesies, Inc., 151 

Eugene, OR). Electrode impedance was maintained below 30 kΩ throughout the recording session. 152 

Participants were instructed to listen carefully to the sentences to be able to answer questions about them. 153 

After reading instructions on a screen, they listened to the stimuli. The stimuli were administered four 154 

times, for a total of 600 trials. In each repetition block, the stimuli were presented in a randomized order. 155 

For each trial, the following events were annotated: the start of the sentence, the start of the HP, the start 156 

of the noun/verb of the HP, and the start of the first word following the HP. At the end of each 157 

repetition, participants were asked two questions about the stimuli (mean percentage of correct answers: 158 

50%) (Figure 1). We do not consider accuracy in the task as important, as the task was presented to 159 

subjects to keep their attention high. The low accuracy is likely since questions were asked every 150 160 

sentences. Participants were offered a break every 75 trials. The experiment lasted about one hour. EEG 161 

was acquired at 500 Hz. The present study received the approval of the Joint Ethics Committee of the 162 

Scuola Normale Superiore and the Scuola Superiore Sant'Anna (protocol n. 22/2022) and informed 163 

consent was obtained. 164 
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 165 

Figure 1. Recording protocol. (A) The EEG data were acquired while the participants fixated on a fixation cross 166 
displayed on a screen. After two seconds of silence, the sentence was played back through a speaker. For each sentence, 167 
its beginning, the beginning of the homophonous part, the beginning of the second word of the homophonous part, and 168 
the beginning of the word following the homophonous part were annotated. The black vertical lines on the graphs on the 169 
left represent the annotated events. The grey-shaded areas are the homophonous part. On top of each graph, there is an 170 
example stimulus sentence and its English translation. The top graph depicts an example of a strong predictable noun 171 
phrase, and the bottom graph shows a strong predictable verb phrase. The homophonous part (la porta) is highlighted in 172 
red. The syntactic trees of the example stimuli are drawn on the right of the graphs. t indicates the position where the 173 
pronoun is base generated in the verb phrase. (B) Data acquisition was divided into 4 blocks. In each block, the 150 174 
stimulus sentences were presented in a randomized order, with 2 s of silence between one stimulus and the other. At the 175 
end of each block, the participants were asked to answer two questions regarding the content of the stimuli. 176 
 177 

EEG pre-processing 178 

First, EEG data were downsampled at 250 Hz to reduce computational time. Then, 2 pre-179 

processing steps were carried out, using a semiautomatic pipeline [12], [13], [14]. The pre-processing was 180 

divided into two steps to minimize the removal of brain activity while maximizing the quality of the 181 

Independent Component Analysis (ICA) decomposition. 182 

Pre-processing step 1 183 

EEG data were band-pass filtered at (1 – 40 Hz) using a Hamming windowed sinc FIR filter [15]. 184 

Then, the signal was divided into non-overlapping windows of length equal to 1 s. The windows with a 185 

joint probability larger than three standard deviations with respect to the mean probability of occurrence 186 
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of a trial were rejected. Independent Components (ICs) were calculated using the Infomax algorithm 187 

[16]. Finally, ICs representing notable eye artifacts were rejected [17]. 188 

Pre-processing step 2 189 

Final ICA weights resulting from Pre-processing Step 1 were applied to data more conservatively 190 

pre-processed within EEG Pre-processing Step 2. The data were epoched from 2 s before the stimulus 191 

onset to 4.5 s after and band-pass filtered (0.1 – 40 Hz) using a Hamming windowed sinc FIR filter [15]. 192 

Epoch length was chosen to always contain the entire stimulus. Bad channels and epochs containing 193 

high-amplitude artifacts, high-frequency noise, and other irregular artifacts were removed. Finally, bad 194 

channels were interpolated using cubic-spline interpolation [18] and the EEG data were re-referenced to 195 

the average. 196 

Event-related spectral perturbation estimation 197 

Previous work showed that the frequency of the EEG signal activity plays an important role in 198 

syntactic processing [4], [6], [19], [20], [21]. Thus, we computed event-related spectral perturbations 199 

(ERSPs) to characterize the neural response to our stimuli in both frequency and time. Time-frequency 200 

transforms of each trial were normalized to the baseline (divisive baseline, ranging from -2000 ms to 0 201 

ms before the start of the sentence), time-warped to the stimulus events [4], [22], and averaged across 202 

trials for each participant, for each stimulus class to obtain the ERSPs [23]. 203 

Representational similarity analysis 204 

Representational similarity analysis (RSA) is an analysis technique used to compare the information 205 

content carried by a representation in the brain with that carried by a model [24]. This is done by 206 

comparing the representational dissimilarity matrices (RDMs) of brain activity with those computed on 207 

some features of the stimuli. The RDMs are square matrices of pairwise dissimilarity values for all pairs 208 

of stimulus-specific patterns. 209 

More specifically, the steps of the RSA analysis are: 210 
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 Computation of model RDMs. The model RDMs are calculated on some features of the stimuli 211 

and not on the EEG data. They were calculated on several dimensions of our stimuli: the phrase type 212 

(NP or VP), the predictability (S. pred., W. pred., Unpred.), the lexical surprisal of the article/clitic of 213 

the HP, the syntactic surprisal of the article/clitic of the HP, the n-gram surprisal of the article/clitic 214 

of the HP, and the POS n-gram surprisal of the article/clitic of the HP (Figure 2A and Figure 4A). 215 

For the surprisal values, the RDMs were calculated using the Euclidean distance between the pairs 216 

of averages of the surprisal values for a given stimulus class. Having a total of 5 classes (Unpred. VPs 217 

and NPs, S. Pred. NPs and VPs, and W. Pred. NPs), the RDMs are 5x5 matrices. The value in row i 218 

and column j of the RDMs for the lexical and the syntactic surprisal is the difference between the 219 

mean value of the lexical (or syntactic) surprisal across all the stimuli of class i and the mean value of 220 

the lexical (or syntactic) surprisal calculated across all the stimuli of class j. The lexical surprisal and 221 

syntactic surprisal RDMs are thus matrices composed of continuous real values.  222 

For the phrase type RDM, the Hamming distance was used, resulting in a binary RDM. The 223 

value in row i and column j of the RDM for the phrase type is 0 if the phrase type of class i is the 224 

same as the phrase type of class j, 1 otherwise. 225 

The predictability RDM is a 3-valued matrix, with the distance between items belonging to the 226 

same class being 0, the distance between S. pred. and Unpred. is 1, and the distance between W. pred. 227 

and the other two classes is 0.5. The distance value of 0.5 was chosen because W. pred. is an 228 

intermediate class between S. pred. and Unpred. 229 

 Computation of brain RDMs. To calculate brain RDMs, the 5 condition-specific ERSPs were 230 

windowed in the time domain with a window length of 200 ms and an overlap of one time sample (4 231 

ms at 250 Hz). The pairwise Euclidean distance between the ERSPs time-frequency samples of two 232 

analogous time windows was then calculated for each pair of conditions. This procedure was repeated 233 

for each time window, for each frequency, for each channel, and for each participant, resulting in 234 

channel-time-frequency-varying participant-specific RDMs. 235 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.579088doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.579088
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

  
 

 Comparison between brain RDMs and model RDMs. The brain RDMs were then compared to 236 

the model RDMs using the correlation coefficient as an index of similarity, resulting in a correlation 237 

value for each time-frequency point, for each model, for each channel, and for each participant.  238 

 Statistical analysis on the correlation values. Finally, these correlation values were tested against 239 

the null hypothesis of being equal to 0 (see Statistical analysis). 240 

Linear modeling 241 

For each participant, we modeled the ERSPs using linear regression. The linear regression aims to 242 

model the observed neural response (time-frequency point, for each channel, for each participant) as a 243 

linear combination of different features of the stimuli. The features of the stimuli  (model regressors) 244 

used were: the phrase type (NP or VP), the predictability (S. pred., W. pred., or Unpred.), their interaction 245 

(phrase type : predictability), the lexical surprisal of the article/clitic of the HP, and the syntactic surprisal 246 

of the article/clitic of the HP. QR decomposition was used to solve the linear model and find the 247 

regression coefficient for each regressor [25]. Specifically, the time-warped trial-by-trial time-frequency 248 

transforms of the EEG signal were used to estimate the regression coefficients for each participant, for 249 

each time-frequency point, and for each channel, resulting in 4 (one for each regressor) 4-dimensional 250 

regression coefficients. Finally, these regression coefficients were tested against the null hypothesis of 251 

being equal to 0 (see Statistical analysis). We repeated the analysis by deleting the syntactic surprisal 252 

regression term to avoid redundancy between this and the interaction between the phrase type and 253 

predictability. These two terms, by design, should convey the same information [9]. 254 

Statistical analysis 255 

Both the correlation coefficients of the RSA, and the regression coefficient of the linear modeling 256 

have 4 dimensions: time, frequency, channels, and participants. Thus, it is possible to perform a cluster-257 

based permutation test in the time-frequency-spatial domain [26]. 258 

The participant-specific correlation values of RSA were compared against matrices of zeros of the 259 

same size to test for the null hypothesis of zero correlation. 260 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.579088doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.579088
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

  
 

To increase the power of the statistical test, the regression coefficients of the linear model were 261 

first averaged in 5 frequency bands (delta: 0-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, and 262 

gamma: 30 – 40 Hz) and 3 time windows (from the start of the sentence to the start of the HP, the HP, 263 

and from the end of the HP to the end of the sentence). The windowed regression coefficients were thus 264 

compared against the null hypothesis of their value being equal to 0, similar to the correlation values of 265 

the RSA [27]. 266 

Pair-wise comparisons of NPs and VPs trials were carried out in the same way, but directly on the 267 

time-frequency transforms of the EEG data. Pair-wise comparison of S. pred. and Unpred. items were 268 

computed using a cluster-based permutation test directly on the time-warped pre-processed EEG signal. 269 

Results 270 

Syntactic surprisal and syntactic class are represented by neural activity 271 

Representational similarity analysis (RSA) was performed to investigate the effect of four 272 

dimensions of our stimuli [the lexical surprisal, the syntactic surprisal, the phrase type (NP or VP), and 273 

the predictability (S. Pred., W. Pred, and Unpred.)] on the brain response, as coded by the ERSPs (i.e. 274 

time-frequency transforms).  275 

First, we found that ERSPs power did not correlate with lexical surprisal. One cluster of significant 276 

negative correlation was found for the syntactic surprisal in the gamma band during the presentation of 277 

the homophonous parts of the stimuli. This negative correlation was found between frontal-left 278 

electrodes (Figure 2B, top row). 279 

For the phrase type, one cluster of significative negative correlation between the brain RDM and 280 

the model RDM was found. Right electrodes responded to the phrase type just after the start of the 281 

sentences, in theta band. The significance lasted up until the start of the second word of the 282 

homophonous part of the stimuli (noun or verb) (Figure 2B, second row). 283 
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For the predictability, two clusters of significant negative correlation were found: (i) frontal 284 

electrodes (with no evident lateralization) responded to the predictability of the stimuli after the start of 285 

the second word of the homophonous part (noun or verb), in the alpha band; (ii) frontal electrodes (with 286 

slight lateralization to the right) significantly correlated with the predictability RDM after the start of the 287 

first word following the homophonous part, with the significance being in a frequency band between 288 

alpha and beta. (Figure 2B, graphs three and four, from the top, one for each significant cluster). 289 

 290 

 291 
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Figure 2. Representational similarity analysis. 292 
(A) Models used in representational similarity analysis. Each of the four matrices is called Representational Dissimilarity 293 
Matrix (RDM). Each RDM is a different representation of our stimuli, along 4 dimensions: the hierarchical lexical 294 
surprisal, the syntactic surprisal, the phrase type (NP or VP), and the predictability (S. pred, W. pred, or Unpred.). (B) 295 
Significant clusters for the representational similarity analysis. The topographic plots show the average t-statistic across 296 
significant time points and frequencies. White dots represent the significant electrodes. The time-frequency graphs 297 
represent the minimum t-value across significant electrodes. Significant time-frequency points are colored in blue (top 298 
graph for the syntactic surprisal, second graph for the phrase type, and graphs three and four for the two significant clusters 299 
for the predictability). The time is adjusted according to the stimulus onset (0 ms). The four white vertical lines 300 
respectively represent: (i) stimulus onset, (ii) the start of the article/clitic, (iii) the start of the noun/verb, (iv) the start of 301 
the word that follows the noun/verb. 302 

 303 

The neural response to the syntactic class is not dependent on lexical surprisal 304 

RSA is not a multivariate analysis, i.e., treating all the models independently, it is not able to 305 

decouple the effect of confounding factors such as the lexical surprisal from the neural response to 306 

features of interest, such as the phrase type. Thus, we performed linear modelling, a multivariate analysis, 307 

on the ERSP power values with the syntactic surprisal, lexical surprisal, phrase type, predictability, and 308 

the interaction between phrase type and predictability as regressors. This analysis revealed only an effect 309 

of the lexical surprisal. A new linear model was treated without the syntactic surprisal under the 310 

hypothesis that having both the syntactic surprisal and the interaction between predictability and phrase 311 

type in the linear model is redundant [9]. This redundancy may cause to decrease the single effects of the 312 

syntactic surprisal and the interaction term making them (singularly) not significant. We chose to utilize 313 

the interaction between phrase type and predictability instead of syntactic surprisal because the term 314 

'interaction' precisely describes our stimuli. Investigating the interplay between phrase type and 315 

predictability allows us to discern syntactic computation in the brain from other types of language 316 

processing. Figure 3A shows the results of the linear modeling without the syntactic surprisal term. This 317 

analysis revealed: (i) a significant negative regression coefficient for the phrase type in the beta band, 318 

during the homophonous part of the sentences, in central and left electrodes; (ii) a significant positive 319 

regression coefficient for the interaction between phrase type and predictability in the beta band, during 320 

the homophonous phrases, in central and frontal electrodes; and (iii) a significant negative regression 321 

coefficient for the lexical surprisal in the delta band, during the start of the sentences and their 322 
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homophonous parts, in posterior electrodes. Importantly, lexical surprisal correlates with brain activity 323 

in a different frequency band, a different time window, and different electrodes than the interaction term. 324 

Syntactic predictability modulates the response to NPs and VPs 325 

Figure 3B displays the results of the cluster-based permutation test on ERSPs for the interaction 326 

between phrase type and predictability, broken down by predictability. For S. pred. sentences, the contrast 327 

between NPs and VPs revealed a stronger negative response for VPs, in the beta band (beta 328 

desynchronization), during the homophonous part of the stimuli. This stronger beta desynchronization 329 

for VPs was found in the central and right electrodes. For Unpred. sentences, the difference between 330 

VPs and NPs was found in lower frequency bands, after the homophonous phrases, where syntactic 331 

interpretation is hypothesized to be carried out by the participants. The response to VPs was stronger 332 

than the response elicited by NPs, in the delta band, for almost all the EEG recording contacts. In theta 333 

band, response to Unpred. VPs was stronger than the response to Unpred. NPs on the channels over 334 

the left hemisphere. 335 
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 336 

Figure 3. Noun phrases vs. verb phrases. 337 
(A) Significant clusters (p < 0.05) for the linear modeling analysis. The topographic plots (head plots) show the average 338 
t-statistic across significant time points and frequencies. White dots represent the significant electrodes. The line graphs 339 
represent the temporal evolution of the coefficients of the linear model, averaged across significant electrodes, for the 340 
given frequency band. The dark grey shaded area represents the standard error across participants, light grey shaded area 341 
shows the significant time points. The time is adjusted according to the stimulus onset (0 ms). The four black vertical 342 
lines respectively represent: (i) stimulus onset, (ii) the start of the article/clitic, (iii) the start of the noun/verb, (iv) the start 343 
of the word that follows the noun/verb. The interaction between phrase type and predictability is denoted as phrase type 344 
: predictability. (B) Results of the cluster-based permutation test on the ERSPs for the contrast noun phrases vs. verb 345 
phrases, for the strong predictable items (top row) and the unpredictable items (second and third rows). No contrast was 346 
done on weakly predictable items since there were only noun phrases. Topographic maps in the first column are the same 347 
as in (A). The line graphs represent the temporal evolution of the power of the ERPSs averaged across significant 348 
electrodes and for the given frequency bands. The last two columns represent the average power across significant time 349 
points and participants, for the given frequency band, for the sentences containing noun phrases (left) and verb phrases 350 
(right). 351 

 352 
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Linear surprisal models do not affect syntactic neural computation 353 

We repeated the RSA and the linear modelling analysis account also for the linear models of 354 

surprisal, i.e., the n-gram surprisal, and the POS n-gram surprisal (Figure 4A). The RSA revealed that 355 

the POS n-gram surprisal (unlike the syntactic surprisal) is not represented by the electrophysiological 356 

activity. The n-gram surprisal showed one cluster of significant negative correlation in the gamma band 357 

during the presentation of the homophonous parts of the stimuli and at the end of the sentences. This 358 

negative correlation was found between frontal-left electrodes (Figure 4B) and only partially overlaps 359 

with that associated to the syntactic surprisal (Figure 2B). 360 

The n-gram surprisal values and the POS n-gram surprisal values were added to the regressor for 361 

the linear modeling. Thus, the regressor for the final linear model were: n-gram surprisal, POS n-gram 362 

surprisal, lexical surprisal, phrase type, predictability, and the interaction between phrase type and 363 

predictability. Both n-gram surprisal and POS n-gram surprisal significantly drive EEG activity. The POS 364 

n-gram surprisal has an effect at the start of the sentence (before the homophonous part) in delta and 365 

beta bands (Figure 5, top 2 graphs). The n-gram surprisal has an effect at the start of the sentence (before 366 

the homophonous part) in delta band (Figure 5, bottom graph). 367 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.579088doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.579088
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

  
 

 368 

Figure 4 Representational similarity analysis of the linear surprisal. 369 
(A) Models used in representational similarity analysis. Each of the two matrices is called Representational Dissimilarity 370 
Matrix (RDM). Each RDM is a different representation of our stimuli, along two dimensions: the n-gram surprisal, and 371 
the POS n-gram surprisal. (B) Significant clusters for the representational similarity analysis. The topographic plots show 372 
the average t-statistic across significant time points and frequencies. White dots represent the significant electrodes. The 373 
time-frequency graphs represent the minimum t-value across significant electrodes. Significant time-frequency points are 374 
colored in blue (both graph for the n-gram surprisal, for the two significant clusters). The time is adjusted according to 375 
the stimulus onset (0 ms). The four white vertical lines respectively represent: (i) stimulus onset, (ii) the start of the 376 
article/clitic, (iii) the start of the noun/verb, (iv) the start of the word that follows the noun/verb. 377 
 378 
 379 
 380 
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 381 
Figure 5. Linear modeling analysis with linear surprisal. 382 
Significant clusters (p < 0.05) for the linear modeling analysis. The topographic plots (head plots) show the average t-383 
statistic across significant time points and frequencies. White dots represent the significant electrodes. The line graphs 384 
represent the temporal evolution of the coefficients of the linear model, averaged across significant electrodes, for the 385 
given frequency band (Greek letter in the graph). The dark grey shaded area represents the standard error across 386 
participants, light grey shaded area shows the significant time points. The time is adjusted according to the stimulus onset 387 
(0 ms). The four black vertical lines respectively represent: (i) stimulus onset, (ii) the start of the article/clitic, (iii) the 388 
start of the noun/verb, (iv) the start of the word that follows the noun/verb. 389 

 390 

Neural response to syntactic category does not depend on systematic confounding effects 391 

To exclude systematic differences in potential lexico-semantic confounding factors between NPs 392 

and VPs, we used a cluster-based permutation test directly on the pre-processed EEG signal and defined 393 

two contrasts: S. pred. NP vs. Unpred. NP, and S. pred. VP vs. Unpred. VP. The rationale behind this 394 

analysis is that if we find the same significant effects for both contrasts, then the systematic differences 395 

between S. pred. NPs and S. pred. VPs that could have affected the previous results can be excluded. We 396 

do not expect systematic differences in confounding factors in Unpred. NPs and Unpred. VPs since the 397 

structure of Unpred. sentences do not allow them by design. We performed this analysis directly on the 398 

filtered data, and not on the time-frequency transformed EEG. This choice allowed us to explore the 399 
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differences occurring in shorter time windows than those possible with ERSPs, due to the dilution effect 400 

of the filtering on the signal. Indeed, we expect those systematic differences to occur during short time 401 

windows. 402 

For the S. pred. NP versus Unpred. NP contrast, 10 clusters were found. For the S. pred. VP vs. 403 

Unpred. VP 14 clusters were found. No differences were found during the baseline period. Six pairs of 404 

clusters were comparable across the two contrasts (Figure 6). Among these six pairs, two spatio-temporal 405 

significant clusters were found during the start of the sentence: one involving frontal, temporal, and 406 

posterior electrodes, denoting a higher positive potential peak for Unpred. sentences right at the start of 407 

the stimuli (Figure 6, first row); the other involving central electrodes and denoting a negative potential 408 

deflection for Unpred. sentences, absent in S. pred. stimuli, right before the start of the homophonous 409 

phrase (Figure 6, second row). Two significant clusters, with opposite polarity, were found in the frontal 410 

and posterior regions during the homophonous phrases, indicating a stronger potential deflection for S. 411 

pred. sentences (Figure 6, third and fourth rows). The last two significant clusters, again with opposite 412 

polarity, were found during the last part of the sentences, in frontal and posterior electrodes, respectively 413 

(Figure 6, fifth and sixth rows). 414 
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 415 

Figure 6. Strongly predictable vs. Unpredictable sentences 416 
Results of the cluster-based permutation test on ERPs for the contrasts S. pred. NP vs. Unpred. NP (left) and S. pred. VP 417 
vs. Unpred. VP (right). The topographic plots show the average t-statistic across significant time points. The line graphs 418 
represent the temporal evolution of the EEG signal, averaged across participants and significant electrodes. The light grey 419 
shaded area shows the significant time points (cluster-based permutation test). The time is adjusted according to the 420 
stimulus onset (0 ms). The four black vertical lines respectively represent: (i) stimulus onset, (ii) the start of the 421 
article/clitic, (iii) the start of the noun/verb, (iv) the start of the word that follows the noun/verb. 422 

 423 

Discussion 424 

In our earlier research [4], [6], SEEG recordings were used to compare the brain activity elicited 425 

by the processing of (homophonous) noun phrases or verb phrases. The primary neural correlate of 426 

syntactic processing was found in the increase in power of frequencies in the high-gamma band (150-300 427 

Hz). We discovered that there were more responsive contacts for VPs than for NPs, with the neural 428 
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network supporting VP processing being wider and involving more cortical and subcortical areas than 429 

the network processing NPs. Unfortunately, the concept of n-gram surprisal represented a confounding 430 

factor for these findings. The higher the rarity of a sequence of words, the higher the surprisal, which is 431 

defined as the negative log probability of a given word following another in a sentence given a corpus 432 

[7]. It is well known that surprisal and brain activity are positively correlated [8], and VPs were associated 433 

to a generally higher n-gram surprisal than NPs. Here, we modulated both the syntactic and lexical 434 

surprisal values of the HPs, showing that the difference in the neural processing of NPs or VPs is better 435 

mirrored by the syntactic surprisal. 436 

Lexical predictability does not affect syntactic processing 437 

Here we used two models of surprisal calculated using hierarchical structures: the lexical surprisal 438 

(word prediction), and the syntactic surprisal (hierarchical POS prediction). Given the nature of the two 439 

surprisal measures and the fact that only the syntactic surprisal was able to fully characterize our stimuli 440 

[9], our results are driven by the syntactic predictability of the HPs rather than their lexical predictability. 441 

On the other hand, the neural correlates of lexical surprisal may be related to other aspects of language 442 

processing, such as processing difficulty during language comprehension [28], [29], and semantic 443 

information retrieval [30]. Moreover, the RSA showed that lexical surprisal failed at eliciting a significant 444 

brain response thus that our stimuli were able to induce syntactic computation while controlling for other 445 

types of language computation. The linear model showed an effect of the lexical surprisal in posterior 446 

electrodes, in the delta band, from the start of the sentence to the end of the homophonous part. This 447 

result aligns with the large body of evidence demonstrating a crucial role of temporo-parietal areas for 448 

language comprehension [31], [32], [33]. Moreover, the prominence of delta oscillations in this context 449 

could be attributed to their recognized role in orchestrating long-range communication and coordinating 450 

cognitive processes, such as memory retrieval and attention allocation [34], [35]. This convergence of 451 

findings substantiates the notion that lexical surprisal exerts a distinct and lasting impact on neural 452 

processing. Importantly, this impact does not overlap with the neural activity related to syntactic 453 
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processing, as the latter is prominent in different electrodes, different frequency bands, and different time 454 

windows. 455 

The electrophysiological correlates of NPs and VPs 456 

Phrase type was represented by the observed differences in neural patterns during the start of the 457 

sentences, and the homophonous part. The significant correlation at the start of the sentence may be due 458 

to the presence of verbs and nouns before the homophonous part for the S. pred. NP and S. pred. VP 459 

stimuli, respectively. Verbs and nouns in isolation are known to elicit different brain responses [36], [37], 460 

[38]. However, we introduced the concept of predictability for this purpose: eliminating confounding 461 

factors thanks to the number of contrasts that we can obtain by comparing our stimuli along different 462 

dimensions. 463 

To this aim, we used the linear modeling analysis to isolate the effects of the phrase type, the 464 

predictability, their interaction, and the lexical surprisal. We found an effect of the phrase type in the beta 465 

band, during the homophonous part, on central/left electrodes. The effect of the interaction between 466 

the phrase type and the predictability was in central/frontal electrodes in the beta band during the 467 

homophonous part. We broke down the effect of the phrase type by the predictability and we found that: 468 

(i) for the S. pred. items, VP elicited higher beta desynchronization during the homophonous part, over 469 

central/right electrodes; and (ii) in the Unpred. case, VPs caused a delta (over most electrodes) and theta 470 

(on right electrodes) synchronization after the homophonous part of the sentence. The lack of a 471 

significant interaction effect between the phrase type and the predictability modeled with linear regression 472 

may be attributed to the lower statistical power in comparison with this post-hoc comparison. The fact 473 

that in the S. pred. case VPs elicited higher brain activity than NPs, during the homophonous part 474 

confirmed our previous findings using SEEG [4]. In this earlier study, only S. pred. stimuli were used. 475 

Furthermore, SEEG and EEG signals have different characteristics. For instance, the high-gamma band 476 

is not recordable using EEG due to the low-pass filtering effect of the scalp and the skull [39], and future 477 

work should further establish whether there is a direct link between the beta band desynchronization in 478 

EEG and high-gamma increase in SEEG. In summary, although expanding on our previous work, we 479 
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have also confirmed with EEG data what we previously observed using SEEG recordings, opening new 480 

research and treatment possibilities as EEG is much simpler to record than SEEG, and comes with fewer 481 

limitations. However, if spatial resolution is of utter importance for the investigation of the neural 482 

correlates of syntactic processing, SEEG still has an advantage [42], and future work is needed to precisely 483 

identify the cortical areas whose activity correlates with the syntactic predictability. 484 

The latency of the difference between NPs and VPs in the Unpred. scenario (i.e., after the 485 

homophonous part) is consistent with the hypothesis on the timing in which the participant realizes what 486 

type of phrase has been heard (NP or VP). Thus, the detected activity in delta and theta bands may be 487 

an index of late disambiguation. It is not surprising that we found different bands for the two 488 

predictability scenarios. In the case of S. pred. sentences, evidence of disambiguation is absent. This is 489 

because participants know if they are listening to a NP or a VP prior to the onset of the homophonous 490 

part. On the other hand, in the Unpred. case, participants must remain uncertain about the structure of 491 

the sentence following the homophonous phrase and should continue to show evidence for 492 

disambiguation. Thus, the late response in delta-theta bands probably reflects this process. The shift of 493 

electrophysiological activity in lower frequencies, together with the higher number of selective electrodes, 494 

may be a correlate of the higher syntactic processing effort required from the listener in the Unpred. 495 

scenario [34], [40], [41]. 496 

Of note, the unpredictable sentences shift the significant activity in the portion that follows the 497 

homophonous phrase, thus the attribution of the class of the HP (NP or VP) takes place after the phrase 498 

has been listened to. 499 

The significant clusters for the contrasts S. pred. NP vs. Unpred. NP, and S. pred. VP vs. Unpred. 500 

VP are highly superimposable. This shows that there are no systematic differences in potential 501 

confounding factors between NP and VP stimuli, in both the S. pred. sentences and in the Unpred. 502 

sentences. Thus, the results shown in Figure 3B and section Syntactic predictability modulates the 503 
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response to NPs and VPs are only due to the effect of the different neural activities underlying the 504 

processing of different syntactic structures. 505 

We did not perform any direct contrast involving W. pred. sentences because W. pred. VP 506 

sentences are impossible in Italian and thus the responses to NPs vs. VPs could not be compared. 507 

However, their inclusion in the experiment was fundamental for the finer modulation of syntactic 508 

surprisal values that we achieved. Without W. pred. sentences we would have less variety in the values of 509 

surprisal and therefore a more limited ability to infer what is happening in the brain due to the values of 510 

surprisal. Nevertheless, W. pred. sentences open many possibilities for future studies.  511 

Syntactic processing vs. surprisal 512 

Syntactic surprisal has a significant effect on the neural response, especially in beta and gamma 513 

bands. The electrophysiological response to the syntactic class depends on the predictability of the 514 

syntactic class, and thus on syntactic surprisal, but not on lexical surprisal, indicating that the observed 515 

response is necessarily syntactic.  516 

Our previous paper [9] has established that the predictability associated with three distinct classes 517 

of stimuli is more accurately represented in a model that incorporates syntactic information. This 518 

assertion is further corroborated by our recent findings. However, the RSA analysis conducted on the 519 

linear surprisal values revealed no significant role of surprisal models based solely on POS. This suggests 520 

that the morphological information encoded in POS alone may be insufficient, and syntax is indeed 521 

necessary to elucidate brain activation patterns. If validated, this would serve as additional evidence 522 

supporting our hypothesis. 523 

Conversely, our analysis identified a significant role of surprisal based on n-gram models. This 524 

aligns with expectations, given the numerous studies demonstrating the impact of n-gram-based surprisal 525 

on cognitive tasks. However, our previous paper on surprisal indicated that n-gram models are not 526 

optimal for distinguishing between different classes of stimuli in terms of predictability. Therefore, it is 527 

not concerning that we observed activations correlating with both n-gram surprisal models and syntactic 528 
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models. Importantly, the electrodes that were significant in the two conditions only partially overlapped, 529 

suggesting that they represent different facets of linguistic stimuli processing. 530 

These results confirm the pivotal role of the computation of syntactic structures in human 531 

languages [42]. We showed different roles for the various EEG frequency bands [43], showing an 532 

immediate response that is syntactic specific in the beta band in the contrast between S. pred. sentences 533 

and a late response in delta and theta bands in the contrast between unpredictable items. This delta-theta 534 

response is an index of disambiguation of the syntactic type of the homophonous phrase after that the 535 

phrase type becomes discernible, coherently with the higher cognitive load associated with syntactic 536 

processing for the Unpred. items. Overall, our findings suggest that the processing of noun phrases and 537 

verb phrases is modulated by the syntactic surprisal as encoded by the predictability of the HPs and that 538 

there are distinct neural representations for strongly syntactically predictable and syntactically 539 

unpredictable stimuli (Figure 7). 540 
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 541 

Figure 7. Main Results.  542 
Graphical summary of the results presented in this paper. Refer to the other figures for the panel legends. 543 
  544 
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Conclusions 545 

This paper showed that the class of predictability correlates with brain activity as predicted by 546 

mathematical models [9].  The observed responses are inherently syntactic because of the distinctions in 547 

NPs and VPs contrasts in S. pred. and Unpred. cases, the alignment of their temporal dynamics with the 548 

expected syntactic processing timings, and the exclusion of acoustic factors, coupled with the integration 549 

of surprisal and syntactic processing concepts. 550 

In this sense, these results constitute a fundamental factor of a broader picture toward the cracking 551 

of the syntactic code of human languages. More specifically, the present results strongly correlate and 552 

provide novel evidence with two previous ones, namely: (i) the distinct electrophysiological correlates of 553 

NPs vs. VPs [4]; (ii) the distinct cortical connectivity related to NPs and VPs [6]. The whole picture 554 

provides a first electrophysiological fine-grained contrast of two basic syntactic units, namely NPs and 555 

VPs, having excluded the confounding factor of phonological information. We found activations 556 

correlating with syntactic and lexical processing in different electrodes, different frequency bands and 557 

different time windows. These results showed that both syntactic and lexical information are important 558 

for language processing but rely on distinct computations. Moreover, the present study showed that 559 

surprisal models based only on morphological information do not play a significant role. Syntactic 560 

information is needed to explain brain activations. 561 

 Our research on neural syntax processing not only enhances our understanding of language in the 562 

brain but also offers promising technological prospects. It could lead to the implementation of 563 

communication devices for individuals with language disabilities for whom speech prostheses based on 564 

motor cortex activity may be ineffective due to the disruption of the language network (e.g., aphasia), as 565 

well as more context-aware virtual assistants, revolutionizing how we interact with linguistic computation 566 

in the brain. 567 

  568 
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Data and code availability 569 

The data and custom Python and MATLAB code supporting these findings are available from the 570 

corresponding author upon reasonable request. 571 
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