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Abstract

Speech comprehension requires the human brain to transform an acoustic waveform into meaning. To do
so, the brain generates a hierarchy of features that converts the sensory input into increasingly abstract
language properties. However, little is known about how these hierarchical features are generated and
continuously coordinated. Here, we propose that each linguistic feature is dynamically represented in the
brain to simultaneously represent successive events. To test this ‘Hierarchical Dynamic Coding’ (HDC)
hypothesis, we use time-resolved decoding of brain activity to track the construction, maintenance, and
integration of a comprehensive hierarchy of language features spanning acoustic, phonetic, sub-lexical,
lexical, syntactic and semantic representations. For this, we recorded 21 participants with
magnetoencephalography (MEG), while they listened to two hours of short stories. Our analyses reveal
three main findings. First, the brain incrementally represents and simultaneously maintains successive
features. Second, the duration of these representations depend on their level in the language hierarchy.
Third, each representation is maintained by a dynamic neural code, which evolves at a speed
commensurate with its corresponding linguistic level. This HDC preserves the maintenance of information
over time while limiting the interference between successive features. Overall, HDC reveals how the
human brain continuously builds and maintains a language hierarchy during natural speech
comprehension, thereby anchoring linguistic theories to their biological implementations.
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Introduction

To achieve speech comprehension, the brain generates a hierarchy of features that span a
representational hierarchy from sound to meaning 1,2. The resulting phonetic 3,4, syllabic 5,6 and lexical
features 7–9 as well as their associated syntactic and compositional structures 10–13 are represented in the
temporal, parietal and prefrontal cortices, with more abstract linguistic representations being encoded in
more distributed and higher-level activation patterns 14,15.

However, the neural dynamics of this hierarchical processing remain elusive 16. This gap of knowledge is
partly due to technical limitations: functional Magnetic Resonance Imaging (fMRI) has limited temporal
resolution and intracranial recordings have generally limited coverage. Consequently, how linguistic
features are continuously built and maintained in this cortical hierarchy remains largely unknown 17–19.

In particular, speech comprehension hinges on a delicate balance between two opposing constraints. The
first constraint involves maintaining low-level elements – like phonemes, long enough to integrate them
into more complex units – like words 7. The second constraint requires continuously updating each
element to keep up with the continuous unfolding of speech, and appropriately process new incoming
information. These constraints theoretically apply across all levels of the hierarchy: from assembling
phonemes into words, to assembling words into sentences. A computational framework is thus essential
to explain how the cortex simultaneously maintains and updates each of the representations of language
to integrate increasingly high-level representations.

Time-resolved decoding of brain activity may provide a promising tool to resolve this issue 20–22. By
decoding the representations at each point in time, acoustic-phonetic 4 and visual features 23 have
recently been shown to be embedded in a dynamic neural code. Specifically, temporal generalization
analyses show that a representation may be maintained over long time periods by successively recruiting
distinct neural populations (Figure 1). We propose that this dynamic coding can be applied hierarchically
to both maintain and update the many representations of language, while avoiding interference across
successive phonemes, syllables, and words; henceforth referred to as Hierarchical Dynamic Coding
(HDC).

To put the HDC hypothesis to the test, we recorded magneto-encephalography (MEG) from 21
participants listening to two hours of audio stories. We fit linear models 20 to decode a comprehensive set
of 54 linguistic features organized into six levels of representation: phonetic, sub-lexical, lexical, syntactic
operation, lexical semantic and syntactic state. We address three main questions: (i) can we decode the
features of the language hierarchy? (ii) what are their relative onsets and durations? and (iii) does their
underlying neural code evolve over time, with speed commensurate to their level in the hierarchy (Figure
1)?

Figure 1. The Hierarchical Dynamic Coding Hypothesis. A: Schematic of the language hierarchy, from the acoustic input to the
meaning of the utterance. Each feature is hypothesized to be encoded by a distinct neural ensemble. B: Schematic of the HDC
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hypothesis: for each feature of the hierarchy, encoding evolves across different neural ensembles as a function of time. C:
Schematic decoding result for a single speech input. Each neural configuration {A, B, C, D} is engaged in sequence, leading to a
lack of generalization across all train/test times. D: Schematic decoding result for sequences of inputs, which satisfies both the
constraint to maintain information over time, and update as new inputs are received. E: Schematic prediction that shorter and longer
features of language will display distinct processing dynamics.

Results

Figure 2: Methods. A: Feature values are plotted for a selection of 500 consecutive words, selecting two example features for each
level (from a total of 54 features). Colour corresponds to the language level it operationalises. Word cloud at the bottom displays
each of the 500 words with fontsize proportional to the number of instances in the story snippet. B: First we fit a receptive field model
based on the envelope and pitch of the acoustic speech input, and regress this out of the continuous MEG signal. Topography
above shows sensor weights sensitive to acoustic features; topography below shows that sensor weights are at zero after this
procedure. C: Data structure. Epoch data matrix X has shape words (8,000) × sensors (208) × time (201). Here a schematic of the
epochs is shown for a subset of the story. Below, a sample of 5 example features are displayed for each word. The superimposed
number and color intensity corresponds to the feature value at a particular word. D: Main equations for the back-to-back regression
method. Α = the fitted regularization parameter. Β = the fitted model coefficients of interest. First we fit ridge regression to decode
each feature y from the MEG signal X, then we evaluate the prediction of the features (Yˆ ) against the true value of y with an
encoding model.

1.1 Robust decoding of speech features

Our first question is whether the rich suite of linguistic features can be decoded from MEG activity during
continuous listening. To evaluate this, we compute the time course of each linguistic feature (Figure 2)
and evaluate statistical significance with a temporal permutation cluster test of the distribution of beta
coefficients across participants. Overall, our results show that we can precisely track a remarkably diverse
– although not exhaustive – set of linguistic features from MEG activity (Figure 3). The results of the full
statistical analyses on all features are provided in Supplementary Tables 1-12. For the analysis on raw
Spearman R correlation rather than B2B regression, see Supplement.

To summarize the levels of the hierarchy that are robustly encoded in neural activity, we grouped
decoding performance of the original 54 linguistic features into 6 feature families, and took the average of
the features in a family, to plot 6 decoding time-courses (Figure 4A). Features across all six feature
families could be detected from MEG responses, with notable differences in latency and duration: on
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average, phonetic features were detectable from -40:230 ms (tˆ (average t-value in the cluster) = 2.57, p =
.013) relative to word offset; sub-lexical features from – 130:550 ms (tˆ = 2.6, p = .002); lexical word class
from -170:200 ms (tˆ = 2.18, p = .029); syntactic operation from -190:1200 ms (tˆ = 2.7, p < .001);
syntactic state (tˆ = 3.54, p < .001) and semantic vectors (tˆ = 3.46, p < .001) throughout the entire search
window (Figure 4A). These results are consistent across the two recording sessions (Supplementary
Figure 6), thus demonstrating internal replicability (see Supplement for detailed results). Overall, this
analysis confirms that, during continuous speech listening, the brain builds a rich set of hierarchical
linguistically motivated features.

Figure 3: Feature decoding timecourses. Timecourses of decoding performance for a subset of language properties, locked to
word offset. Line color corresponds to family assignment, which are listed above. Solid trace corresponds to mean performance
across subjects; shading is the standard error of the mean across subjects. A bold mean trace corresponds to the result of a
temporal permutation cluster test, indicating when the feature is decodable significantly better than chance. Dashed black line
corresponds to chance-level performance.

1.2. The timing of linguistic representations depends on their level in the language hierarchy.

How do the latency and duration of each feature relate to their respective level in the linguistic hierarchy?
To address this issue, we analyzed the average time-course of each of the 6 feature families (Figure 4).
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Figure 4: Decoding hierarchical features. A: Result of decoding each language level over time. The beta coefficients of each
feature are stacked on top of each other, such that the top of the timecourse plot corresponds to the cumulative sum of all features
in that linguistic level. The x-axis corresponds to time in seconds relative to word offset. The y-axis corresponds to the cumulative
beta-coefficient across features. Solid line below the time-course represents the extent of the significant temporal cluster; asterisks
represent its significance. B: Decoding performance zooming in for the lowest four feature families, and showing the standard error
across subjects. Higher level features come online earlier than lower level ones. This is shown in the barplot, averaging performance
before word offset shows a linear decrease in amplitude. * p < .05; ** p < .01; *** p < .001

First, we assessed the relationship between hierarchy and decoding onset time. For this, we normalized
the decoding performance for each feature family, by dividing the group average by its maximum, for each
family separately. We analyzed the rise-time before word offset (for the analysis on word onset see
Supplementary Figures). As shown in Figure 4B, higher-level features were detectable earlier than
lower-level features, resulting in a significant negative correlation between hierarchical level and the peak
of the normalized performance (r = -0.82, p < .001).
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Second, we tested the relationship between hierarchy and decoding duration. We found that higher-level
features were decodable significantly longer than lower-level features, resulting in a significant positive
correlation between level and duration (r = +0.75, p < .001). This effect was particularly striking for the
syntactic and semantic features, which were decodable for over 1s after word offset, continuing well into
the processing of the subsequent words (see Supplementary Figure 5 for the distribution of latencies of
upcoming words).

Third, we tested the extent to which different features of the hierarchy are represented in parallel. We
found evidence of a nested temporal structure, whereby the decodable window of a given level (L) was
generally contained within the decodable window of the feature at L+1. For example, the start and end of
significant phoneme decoding falls within the start and end of (sub)lexical decoding, and that in turn within
the start and end of word class decoding, etc. A one-way F-test revealed that the entire hierarchy as
defined by the 6 feature families was decodable in parallel from -40:230 ms (F-value in the cluster) = 4.1,
p < .001) relative to word offset, i.e., throughout the duration of phonetic processing of the final speech
sound of the word.

Together, these results confirm a key prediction of HPC: the dynamics of processing are increasingly
sustained as the feature under consideration is high in the language hierarchy. We also observe that
information at each level is encoded well into the processing of subsequent phonemes and words, leading
to significant parallel processing, across and within levels of representation.

1.3. The neural bases of language exhibit hierarchical dynamics.

Overall, finding that each linguistic feature can be decoded – and is thus represented – for a longer time
window than its actual duration in natural speech raises a critical question: how do successive
representations avoid mutual interference?

Here, we test the Hierarchical Coding Hypothesis: a dynamic neural code allows successive phonemes,
syllables and words to be maintained without interfering with one another. To test this, we implemented a
temporal generalization analysis 4,20 (Figure 1). This method involves evaluating whether the topographic
pattern learnt at time t generalizes to subsequent and preceding time-points (see Methods for details). If
the representation is held within the same neural population over time, then the topographic pattern learnt
at time t should generalize to time t+N, leading to a ‘square’ decoding matrix. By contrast, if the neural
code evolves as a function of time, then the topographic pattern learnt at time t would not be the same at
time t+N, even if the representation can also be decoded at t+N. In this scenario of a dynamic code, we
thus expect to detect a ‘diagonal’ matrix. In sum, we can compare two durations: (1) the window during
which the representation can be decoded and (2) the window during which decoders tend to generalize.

We applied this analysis to each of our language features, and then averaged the generalization matrices
over the six levels of interest (Figure 5) to estimate the similarity of spatial evolution across the hierarchy.
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Figure 5: Evidence for Hierarchical Dynamic Coding. A: Temporal generalization analysis for each of the six linguistic levels of
analysis. Each contour represents a significance threshold of p < .05, p < .01, p < .005, and p < .001. B: Same data as shown in A
but for just the p < .01 threshold. C: Cumulative temporal generalization performance for the temporal decoders trained at different
time-points relative to word offset. D: Data re-aligned relative to the diagonal of the temporal generalization matrix, showing the
relationship between format maintenance and feature complexity. ***: p < .001.

We found that all six feature families are processed using a dynamic neural code. The neural activity
patterns associated with each linguistic features are only stable for a relatively short time period: phonetic
duration=184 ms; sustain=64 ms; sub-lexical duration=752 ms; sustain=384 ms; word class
duration=536ms; sustain=224 ms; syntactic operation duration=1392ms; sustain=720 ms; syntactic state
duration=1250 ms; sustain=1600 ms). This means that all levels of representation across the hierarchy
are supported by neural populations that change over time.

Furthermore, the stability of a linguistic feature depends on its level in the language hierarchy: The
lower-level phonetic features, which are defined over smaller linguistic units (phonemes), evolved
significantly faster (average generalization time 64 ms), than lexical features (224 ms), and those, faster
than syntactic features (730 ms). This led to a significant correlation between the location of the family in
the hierarchy, and duration of information sustain (r = -0.89, p = .034) (Figure 5D). This finding suggests
that while all levels of the hierarchy share a dynamic coding scheme, the speed with which information is
routed to different neural populations scales with unit duration and abstraction.
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Discussion

The present study shows that Hierarchical Dynamic Coding (HDC) provides a succinct account of how the
brain continuously coordinates the hierarchy of representations underlying speech comprehension.
Specifically, we find, with a comprehensive suite of 54 linguistic features decoded from MEG, that
language representations are systematically embedded in a neural code, which changes at a speed
commensurate with the corresponding linguistic level.

1. Content: Hierarchical representations

We decoded 54 speech features, organized within six levels of representation. These features are
motivated by linguistic theory and are claimed to be relevant dimensions of language structure and
content. However, their role in language processing remains contentious 1,24. Our study thus clarifies the
validity of these theories for understanding how the brain processes language. First, we find that MEG
responses reliably track three highly-debated sublexical units: phonemes, syllables, and morphemes
(Figure 3) 8,25. This result strengthens recent fMRI findings 26, and suggests that these units may, in fact
co-exist in the brain, and thus all serve as linguistic primitives. In other words, the brain may not have any
quandary with generating multiple, partially redundant representations from the speech input. Rather, it
can use these ubiquitous representations depending on the required task (e.g., speech segmentation;
word-formation; grammatical analysis).

Second, our decoders reveal the timing of multiple syntactic features. Although syntax is often considered
a landmark component of language 27–29, its neural underpinnings are notoriously challenging to study
10,12,13,30,31. Here, we show that the brain represents grammatical properties both at the word level (e.g. part
of speech) and at the tree-structure level (e.g. the complexity of the syntactic tree). Furthermore, these
two sub- and supra-lexical levels appear to be linked by detectable syntactic operations, namely node
opening and node closing. Although much in-depth work remains necessary, the possibility to track such
symbolic operations pave the way to understand how such symbolic structures are built by neuronal
populations.

2. Code: Hierarchical dynamic coding (HDC)

The existence of HDC is here characterized by three main findings. First, all levels of the language
hierarchy are embedded in a continuously-evolving neural code. The “diagonal” temporal generalizations
we observe (Figure 5) indicate that the very same linguistic feature can be decoded from distinct neural
patterns across time. This means that each feature is represented by a sequence of neural populations
rather than being maintained within a static activity pattern 20,21. Importantly, this dynamic coding is
present, not just for one level of representation as previously reported 4,23 but across all levels of the
hierarchy. This result thus indicates a canonical processing strategy independent of feature abstraction
and timescale. Overall, HDC effectively resolves the tension between the two constraints of speech
comprehension: namely (1) maintaining individual linguistic representations, while (2) continuously
updating them as new speech inputs are received.

Second, higher level features are maintained significantly longer in the neural signal, extending into the
processing of multiple words in the future (Figure 4). This shows that each feature is maintained much
longer than their corresponding presence in the speech input, and, consequently, successive phonemes,
syllables, words, and syntactic states are simultaneously represented at each time point. This temporal
overlap is much longer than previously appreciated 3,10.

Third, the speed of neural dynamics reduces with the level of language hierarchy: The neural code
changes less rapidly for high level representations than for low level representations, as marked by
different “diagonal widths” in the temporal generalization analysis (Figure 5). This finding echoes a large
body of literature on the oscillatory bases of language processing, whereby higher-level representations
(e.g. words) are linked to slower oscillations (e.g. delta) than lower-level representations (e.g. syllables =
theta) 32–34. Anatomically, these results also fit with the fact that higher-level areas (e.g. fronto-parietal
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cortices) integrate speech representations over longer time periods than lower-level areas (e.g. Heschl
gyrus) 35–39. Our results complement these studies, by showing that this hierarchy reflects the necessity to
both maintain successive features and avoid their representational interference at each level of the
hierarchy.

3. Bridging the explanatory gap between AI and the neuroscience of language

Our approach differs from alternative methods based on the language features automatically generated
by large language models 37,40–43. While powerful in accounting for brain responses, the resulting features
are notoriously difficult to interpret. One interesting point of potential convergence with large language
models, however, is their use of the ‘transformer’ architecture, which implements “positional embedding”
44,45: i.e., a continuously evolving projection which helps the model to temporally locate each word in a
sentence. Such position embeddings apply a geometrically-predictable transformation to the
representations of successive tokens. To some extent, we observe a similar process, whereby each
hierarchical representation is projected by a dynamical embedding, which preserves both the order and
the fidelity of the incoming information. Beyond comparing the representations of deep nets and those of
the brain, it will be important, in the future, to evaluate whether their coding schemes may indeed
converge.

4. Evidence of a reverse hierarchy

An important contribution of our work is in linking different levels of the language hierarchy to distinct
processing dynamics. One striking observation is the inverse relationship between feature complexity and
onset of significant feature decoding relative to word offset. Higher-level features (syntactic properties)
come online ∼500 ms before low-level features (phonetic and sub-lexical properties) (Figure 3). This result
is in line with the ‘reverse hierarchy’ theory as pioneered in vision 46–48, which stipulates that high-level
representations (e.g., object identity: it is a cat; it is a house) are immediately activated based on
prediction from context, and thus offer immediate access to global information that forms the gist of the
visual scene. Only later are local details of the input filled in (e.g., orientation, color). A similar process
could occur in speech processing: Higher order structures such as syntactic frames and semantic
contents may be immediately available based on the context, and thus serve to guide the interpretation of
lower levels, such as lexical identity and phonological form. In this view, this reverse hierarchy would only
be observable when the language input has a context which provides an overarching semantic topic and
syntactic frame. Without this high-level information, processing necessarily proceeds in a compositional,
bottom-up fashion, because there is no context upon which to bootstrap subsequent processes. Because
previous studies often present subjects with de-contextualized language input (i.e. isolated words or
phrases), thus withholding the context to construct higher-order information, prior work may have been
unable to observe the phenomenon we describe here.

A reverse hierarchy architecture for speech processing presents three computational advantages. First,
because higher-level language features are abstracted away from the sensory signal, comprehension
would be more robust to auditory noise and ambiguity 49,50. Second, restricting the search space of
possible words from the highest levels means that predictions are formed based on the syntactic and
semantic content of the message, which are more robust against acoustic noise, and uninformative
phonetic variation 51. Finally, it potentially speeds up processing by initiating high-level computations early
during comprehension, rather than waiting for them to be formed compositionally in purely bottom-up
fashion 52–54.

Overall, this suggests that in continuous speech, processing does not unfold from the bottom-up. Rather,
higher order semantic and syntactic structures are available to the processing system earlier than the
sensory signal of the speech sounds being processed.

5. Conclusion

Overall, our results show that the brain generates a sophisticated – yet interpretable – set of linguistic
features to comprehend speech. These features, ranging from phonemes to syntactic trees, follow
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canonical coding dynamics, which adapts its processing speed as a function of level in the language
hierarchy. The resulting Hierarchical Dynamic Coding (HDC) elegantly balances the preservation of
information over time with minimizing overlap between consecutive language elements. This system
provides a clear view of how the brain may organize and interpret speech in real time, linking linguistic
theories with their neurological foundations.
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Methods

3.0. Definition of terms:

● Feature: a property of language: e.g., “fricative” phonetic feature; word frequency, etc.
● Level: a group of features at the same degree of hierarchical position: e.g. acoustic (pre

symbolic), sub-lexical, lexical, supra lexical
● Representation: neural encoding scheme of a feature
● Dynamic coding: when neural representations are instantiated by distinct neural populations

over time.
● Hierarchical Dynamic Coding: when different levels follow a dynamic coding scheme

3.1. Participants

Twenty-one native English participants were recruited from the NYU Abu Dhabi community (13 female;
age: M=24.8, SD=6.4). All provided their informed consent and were compensated for their time.
Participants reported having normal hearing and no history of neurological disorders. Each subject
participated in the experiment twice. Time between sessions ranged from 1 day to 2 months. All
participants gave their informed consent, and the experiment was approved by the local IRB committee of
NYU Abu Dhabi.

3.2. Stimulus development

Four fictional stories were selected from the Open American National Corpus 56: Cable spool boy (about
two bothers playing in the woods); LW1 (sci-fi story about an alien spaceship trying to find home); Black
willow (about an author struggling with writer’s block); Easy money (about two old friends using magic to
make money).

Stimuli were annotated for phoneme boundaries and labels using the ‘gentle aligner’ from the Python
module lowerquality. Some prior testing provided better results than the Penn Forced Aligner 57.

Each of the stories were synthesised using the Mac OSX text-to-speech application. Three synthetic
voices were used (Ava, Samantha, Allison). Voices changed every 5-20 sentences. The speech rate of
the voices ranged from 145-205 words per minute, which also changed every 5-20 sentences. The
silence between sentences randomly varied between 0-1000 ms.

3.3. Procedure

Before the experiment proper, the participant was exposed to 20 seconds of each speaker explaining the
structure of the experiment. This was designed to help the participants attune to the synthetic voices.
The order of stories was fully crossed using a Latin-square design. Participants heard the stories in the
same order during both the first and second sessions. This was in order to make direct comparisons
between the first and second sessions.

Participants answered a two-choice question on the story content every ∼3 minutes. For example, one of
the questions was “what was the location of the bank that they robbed”? The purpose of the questions
was to keep participants attentive and to have a formal measure of engagement. All participants
performed this task at ceiling, with an accuracy of 98%. Participants responded with a button press.
Stimuli were presented binaurally to participants though tube earphones (Aero Technologies), at a mean
level of 70 dB SPL. The stories ranged from 8-25 minutes, with a total running time of ∼1 hour.

3.4. MEG acquisition
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Marker coils were placed at the same five positions to localise each participant’s skull relative to the
sensors. These marker measurements were recorded just before and after the experiment in order to
track the degree of movement during the recording.

MEG data were recorded continuously using a 208 channel axial gradiometer system (Kanazawa Institute
of Technology, Kanazawa, Japan), with a sampling rate of 1000 Hz and applying an on- line low-pass filter
of 200 Hz.

3.5. Preprocessing MEG

The raw MEG data were noise reduced using the Continuously Adjusted Least Squares Method (CALM:
58, with MEG160 software (Yokohawa Electric Corporation and Eagle Technology Corporation, Tokyo,
Japan).

The data were bandpass-filtered between 0.1 and 50 Hz using MNE-Python’s default parameters with
firwin design [50] and downsampled to 250 Hz. Epochs were segmented from 200 ms pre-phoneme onset
to 600 ms post-phoneme onset. No baseline correction was applied.

3.6. Effects of acoustic features

We used a temporal receptive field (TRF) model to regress from the raw MEG data responses that were
sensitive to fluctuations in the pitch and envelope of the acoustic speech signal. We used the
ReceptiveField function from MNE-Python 59, using ridge regression as the estimator and laplacian
regularization. We tested ten lambda regularization parameters, log-spaced between 1−6 and 1+6, and
picked the model with the highest predictive performance averaged across sensors. MEG sensor activity
at each ms were modeled using the preceding 200 ms of envelope and pitch estimates. Both the acoustic
and MEG signals were demeaned and scaled to have unit variance before fitting the model. MEG
acoustic-based predictions were then transformed back into original MEG units before regressing out of
the true MEG signals. This process, including fitting hyper-parameters, was applied for each story
recording and for each subject separately, across 3 folds. This yields a de-confounded MEG dataset on
which to continue our analysis.

3.7. Modeled features

We investigated whether single-trial sensor responses varied as a function of 54 features. Features
spanned different levels of the linguistic hierarchy and included both binary and continuous variables.

3.7.1. Phoneme-level features

Phonetic features were derived from the multi-value feature system reported in 60. Note that this feature
system is sparse relative to the full set of distinctive features that can be identified in English; however, it
serves as a reasonable approximation of the phonemic inventory for our purposes.

Voicing. This refers to whether the vocal chords vibrate during production. For example, this is the
difference between b versus p and z versus s.

Manner of articulation. Manner refers to the way by which air is allowed to pass through the articulators
during production. Here we tested five manner features: fricative, nasal, plosive, approximant, and vowel.

Place of articulation. Place refers to where the articulators (teeth, tongue, lips) are positioned during
production. For vowels, this consists of: central vowel, low vowel, mid vowel, high vowel. For consonants,
this consists of: coronal, glottal, labial and velar.

3.7.2. Sub-lexical features
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Number of phonemes, syllables and morphemes in the word. These features were obtained from the
English Lexicon Project (ELP) 61, which included a corpus of spoken English. They constitute a count of
the total number of units within the word.

Number of phonemes in the syllable. Also derived from the ELP. Constitutes a count of the total number
of phonemes within the current syllable.

Word frequency. Also derived from the ELP. Corresponds to the log frequency of the word from the
subtitles corpus of American English.

Phonological neighbourhood density. Also derived from the ELP. Corresponds to how many other words
can be formed by substituting a single phoneme in the word to create another word. This has been
reported as a metric of lexical competition.

3.7.3. Word class

All word class labels were derived from the syntactic parse of the stories. They are dummy coded relative
to 11 word-class categories: Adjective (e.g. blue, tall); Coordinating conjunction (e.g. and, or); Determiner
(e.g. the, a); Noun (e.g. house; girl); Pronoun (e.g. she, they); Preposition (e.g. under, on); Adverb (e.g.
slowly, fast); Verbal preposition (e.g. to); Verb (e.g. run, jump); WH-Word (e.g. where, who); Existential
there (e.g. there).

3.7.4. Syntactic operation

These features are derived from the penn-treebank syntactic parse of the stories. Number of closing
nodes corresponds to how many brackets of the tree are being closed at a particular word; opening nodes
corresponds to how many brackets are opened at a particular word. Sentence end corresponds to a
binary coding of whether the word is in sentence-final position.

3.7.5. Syntactic state

These features are derived from the penn-treebank syntactic parse of the stories. Number of open nodes
corresponds to how many brackets remain open at a particular word. Tree depth corresponds to the
number of levels down a tree a particular word is situated. Tree depth +/- 1 corresponds to the depth at
the immediately preceding and subsequent word. These regressors are included to account for
auto-correlation in the stimulus features. Linear order corresponds to the location of the word in the
sentence; +/- corresponds to the same at the previous and next word.

3.7.6. Semantic vector

We obtained the 50-dimensional word embedding GloVe vectors 61,62 for each of our words and applied a
principal component analysis, yielding ten principal components. These components are organised
relative to the amount of variance in the original GloVe embeddings they correspond to.

3.8. Back-to-back regression decoding

We fit a back-to-back regression algorithm 63, which allows us to decode multiple features from the MEG
data while also controlling for their co-variation. The resulting model coefficients represent how robustly a
linguistic feature is encoded in neural responses, above and beyond the variance accounted for by the
other linguistic features.

For the neural decoding, the input features were the magnitude of activity at each of the 208 MEG
sensors. This approach allows us to decode from multiple, potentially overlapping, neural representations,
without relying on gross modulations in activation strength 63,64.
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Because some of the features in our analysis are correlated with one another, we need to jointly evaluate
the accuracy of each decoding model relative to its performance in predicting all modeled features, not
just the target feature of interest. This is because, if fitting each feature independently, we will not be able
to dissociate the decoding of feature f from the decoding of the correlated feature fˆ. The necessity to use
decoding over encoding models here, though (which, do not suffer so harshly from the problem of
co-variance in the stimulus space) is one of signal to noise: we expect any signal related to linguistic
processes to be contained in low-amplitude responses that are distributed over multiple sensors. Our
chances of uncovering reliable responses to these features is boosted by using multivariate models.
To overcome the issue of covariance, but still to capitalize on the advantages of decoding approaches, we
implement a back-to-back ridge regression model [30]. This involves a two stage process. First, a ridge
regression model was fit on a random half of the data, at a single time- point. The mapping was learnt
between the multivariate input (activity across sensors) and the univariate stimulus feature (one of the 54
features described above). All decoders were provided with data normalized by the mean and standard
deviation in the training set:

where yi∈ {±1} is the feature to be decoded at trial i and Xi is the multivariate neural measure.
The l2 regularization parameter α was also fit, testing 20 log-spaced values from 1−5 to 15. This was
implemented using the RidgeCV function in scikit-learn 65.

Then, we use the other half of the acoustic or neural responses to generate a prediction for each of the 31
features corresponding to the test set. However, because the predictions are correlated, we need to
jointly-evaluate the accuracy of decoding each feature, to take into account the variance explained by
correlated non-target features. To do this, we fit another ridge regression model, this time learning the
beta coefficients that map the matrix of true feature values to predicted feature values:

where yi∈ {±1} is the ground truth of a particular stimulus feature at trial i and Yˆi is the prediction for all
stimulus features. A new regularization parameter α was learnt for this stage. By including all stimulus
features in the model, this accounts for the correlation between the feature of interest and the other
features. From this, we use the beta-coefficients that maps the true stimulus feature to the predicted
stimulus feature. Beta coefficients serve as our metric of decoding performance: if a stimulus features is
not encoded in neural responses (the null hypothesis) then there will be no meaningful mapping between
the true feature y and the model prediction yˆ. Thus, the beta coefficient will be zero – equivalent to
chance performance. If, however, a feature is encoded in neural activity (the alternative hypothesis), we
should uncover a significant relationship between y and yˆ, thus yielding an above-zero beta coefficient.

The train/test split was performed over 100 folds, and the beta-coefficients were averaged across folds.
This circumvents the issue of unstable coefficients when modeling correlated variables. These steps were
applied to each subject independently.

3.9. Temporal generalization decoding

Temporal generalization (TG) consists of testing whether a temporal decoder fit on a training set at time t
can decode a testing set at time t′ 20. This means that rather than evaluating decoding accuracy just at the
time sample that the model was trained on, we evaluate its accuracy across all possible train/testing time
combinations.

TG can be summarized with a square training time × testing time decoding matrix. To quantify the stability
of neural representations, we measured the duration of above-chance generalization of each temporal
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decoder. To quantify the dynamics of neural representations, we compared the mean duration of
above-chance generalization across temporal decoders to the duration of above-chance temporal
decoding (i.e. the diagonal of the matrix versus its rows). These two metrics were assessed within each
subject and tested with second-level statistics across subjects.

3.10. Comparing decoding performance between trial subsets

To evaluate whether the processing of syntax built over time, we subset our analysis by evaluating
decoding performance at different word positions in the sentence. We add a modification to our train/test
cross-validation loop. The data are trained on the entire training set (i.e. the same number of trials as the
‘typical analysis’), and the test set is grouped into the different levels of interest. We evaluate model
performance separately on each split of the test data, which yields a time-course or generalization matrix
for each group of trials that we evaluate on: in this case, each word position in the sentence.

3.11. Group statistics

To evaluate whether decoding performance is better than chance, we perform second- order statistics.
This involves testing whether the distribution of beta coefficients across subjects significantly differs from
chance (zero) across time using a one-sample permutation cluster test with default parameters specified
in the MNE-Python package 59.
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